1
|
Onger ME, Altun G, Yildiran A. Pigment epithelium-derived factor enhances peripheral nerve regeneration through modulating oxidative stress and stem cells: An experimental study. Anat Rec (Hoboken) 2023; 306:2621-2635. [PMID: 36787348 DOI: 10.1002/ar.25177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury is common and negatively affects an individual's quality of life. Drugs used for peripheral nerve regeneration should aim to eliminate symptoms such as neuropathic pain and have therapeutic effects. In recent studies, pigment epithelium-derived factor (PEDF) has been considered an essential therapeutic agent because of its potential neuroprotective properties. In this study, we aimed to investigate the efficacy of locally applied PEDF for peripheral nerve regeneration. Twenty-four Wistar albino male rats were used. The study groups included Injury (n = 12) and Injury+PEDF (n = 12). An injury model was created by applying 50 N pressure to the right sciatic nerves in groups, and 10 μg/kg local PEDF was injected into the Injury+PEDF group. After 28 days of recovery, functional tests and stereological, immunohistochemical, and biochemical analyses were performed. A significant difference was found between the Injury and Injury+PEDF groups in amplitude, whereas no difference was found in latency. The number of myelinated axons and the myelinated axon area increased significantly in the Injury+PEDF group, while no statistically significant difference was found in myelin sheath thickness. Superoxide dismutase, catalase, and glutathione peroxidase activities were increased by PEDF, whereas they were suppressed in mesenchymal stem cells. PEDF exerts functional, quantitative, and antioxidative effects on sciatic nerve injury during neuroregeneration. In addition, when oxidative stress parameters were examined, it was seen that PEDF reduced oxidative stress following sciatic nerve injury.
Collapse
Affiliation(s)
- Mehmet Emin Onger
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Department of Neuroscience, Health Science Institute, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Alisan Yildiran
- Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Department of Immunology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Wood KL, Fonseca MIA, Gunderson KA, Nkana ZH, Israel JS, Poore SO, Dingle AM. Local Environment Induces Differential Gene Expression in Regenerating Nerves. J Surg Res 2022; 278:418-432. [PMID: 35618492 DOI: 10.1016/j.jss.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Approximately 80% of amputations are complicated by neuromas. Methods for neuroma management include nerve translocation into bone and implantation into skeletal muscle grafts, which have also facilitated the development of regenerative neural interfaces to enable fixation of prosthetics with motor and sensory feedback. However, molecular-level differences between nerves in these environments have not been investigated. This study aimed to elucidate the physiology of regenerating nerves in different settings by assessing gene expression. MATERIALS AND METHODS New Zealand white rabbits underwent transfemoral amputation with sciatic nerve transposition into the femur or tacked to skeletal muscle. At 5 wk, ribonucleic acid (RNA) sequencing of samples of distal nerve terminating in bone or muscle and nerve of the contralateral limb (control) identified differentially expressed genes (DEGs) and biochemical pathways (α = 0.05). RESULTS Three samples of nerve housed in bone, four of nerve tacked to muscle, and seven naïve controls were analyzed. Relative to controls, nerve housed in bone had little within-group variation and 13,028 DEGs, and nerve tacked to muscle had dramatic within-group variation and 12,811 DEGs. These samples upregulated the following pathways: lysosome, phagosome, antigen processing/presentation, and cell adhesion molecule. Relative to nerve housed in bone, nerve tacked to muscle had 12,526 DEGs, demonstrating upregulation of pathways of B-cell receptor signaling, focal adhesion, natural killer-cell mediated cytotoxicity, leukocyte transendothelial migration, and extracellular matrix-receptor interactions. CONCLUSIONS Nerve housed in bone has a more predictable molecular profile than does nerve tacked to muscle. Thus, the intramedullary canal may provide a more reliable setting for neuroma prevention and neural interfacing.
Collapse
Affiliation(s)
- Kasey Leigh Wood
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Marina I Adrianzen Fonseca
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kirsten A Gunderson
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zeeda H Nkana
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacqueline S Israel
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
3
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
4
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
5
|
Ding YQ, Qi JG. Sensory root demyelination: Transforming touch into pain. Glia 2021; 70:397-413. [PMID: 34549463 DOI: 10.1002/glia.24097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022]
Abstract
The normal feeling of touch is vital for nearly every aspect of our daily life. However, touching is not always felt as touch, but also abnormally as pain under numerous diseased conditions. For either mechanistic understanding of the faithful feeling of touch or clinical management of chronic pain, there is an essential need to thoroughly dissect the neuropathological changes that lead to painful touch or tactile allodynia and their corresponding cellular and molecular underpinnings. In recent years, we have seen remarkable progress in our understanding of the neural circuits for painful touch, with an increasing emphasis on the upstream roles of non-neuronal cells. As a highly specialized form of axon ensheathment by glial cells in jawed vertebrates, myelin sheaths not only mediate their outstanding neural functions via saltatory impulse propagation of temporal and spatial precision, but also support long-term neuronal/axonal integrity via metabolic and neurotrophic coupling. Therefore, myelinopathies have been implicated in diverse neuropsychiatric diseases, which are traditionally recognized as a result of the dysfunctions of neural circuits. However, whether myelinopathies can transform touch into pain remains a long-standing question. By summarizing and reframing the fragmentary but accumulating evidence so far, the present review indicates that sensory root demyelination represents a hitherto underappreciated neuropathological change for most neuropathic conditions of painful touch and offers an insightful window into faithful tactile sensation as well as a potential therapeutic target for intractable painful touch.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Odorico SK, Shulzhenko NO, Zeng W, Dingle AM, Francis DO, Poore SO. Effect of Nimodipine and Botulinum Toxin A on Peripheral Nerve Regeneration in Rats: A Pilot Study. J Surg Res 2021; 264:208-221. [PMID: 33838405 DOI: 10.1016/j.jss.2021.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/05/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve damage is a frequent problem, with an estimated 2.8%-5.0% of trauma admissions involving peripheral nerve injury. End-to-end, tension-free microsurgical repair (neurorrhaphy) is the current gold standard treatment for complete transection (neurotmesis). While neurorrhaphy reapproximates the nerve, it does not address the complex molecular regenerative process. Evidence suggests that botulinum toxin A (BTX) and nimodipine (NDP) may improve functional recovery, but mechanisms of action remain unknown. METHODS This research investigates BTX and NDP for their novel capacity to improve neural regeneration in the setting of neurorrhaphy using a Lewis rat tibial nerve neurotmesis model. In a triple-masked, placebo-controlled, randomized study design, we compared functional (rotarod, horizontal ladder walk), electrophysiological (conduction velocity, duration), and stereological (axon count, density) outcomes of rats treated with: NDP+saline injection, BTX+NDP, Saline+placebo, and BTX+placebo. Additional controls included sham surgery +/- BTX. RESULTS NDP+saline outperformed other treatment groups in the ladder walk. This group had the fewest deep slips (15.07% versus 30.77% in BTX+NDP, P = 0.122), and the most correct steps (70.53% versus 55.58% in BTX+NDP, P = 0.149) in functional testing. NDP+saline also had the fastest nerve conduction velocity (0.811m/s versus 0.598m/s in BTX+NDP, P = 0.126) among treatment groups. BTX+NDP had the highest axon count (10,012.36 versus 7,738.18 in NDP+Saline, P = 0.009). CONCLUSION This study is the first to test NDP with BTX in a multimodal assessment of nerve recovery following neurotmesis and neurorrhaphy. NDP outperformed BTX+NDP functionally. Future work will focus on nimodipine in an effort to improve nerve recovery in trauma patients.
Collapse
Affiliation(s)
- Scott K Odorico
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Nikita O Shulzhenko
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Weifeng Zeng
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - Aaron M Dingle
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin
| | - David O Francis
- University of Wisconsin School of Medicine and Public Health, Division of Otolaryngology, Department of Surgery, Madison, Wisconsin; University of Wisconsin School of Medicine and Public Health, Wisconsin Surgical Outcomes Research Program, Department of Surgery, Madison, Wisconsin
| | - Samuel O Poore
- University of Wisconsin School of Medicine and Public Health, Division of Plastic Surgery, Department of Surgery, Madison, Wisconsin.
| |
Collapse
|
7
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Wei S, Hu Q, Cheng X, Ma J, Liang X, Peng J, Xu W, Sun X, Han G, Ma X, Wang Y. Differences in the Structure and Protein Expression of Femoral Nerve Branches in Rats. Front Neuroanat 2020; 14:16. [PMID: 32322192 PMCID: PMC7156789 DOI: 10.3389/fnana.2020.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shuai Wei
- Tianjin Hospital Tianjin University, Tianjin, China
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qian Hu
- Department of Geriatrics, The Second People’s Hospital of Nantong, Nantong, China
| | - Xiaoqing Cheng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Xuezhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xun Sun
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Gonghai Han
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- *Correspondence: Xinlong Ma Yu Wang
| | - Yu Wang
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Xinlong Ma Yu Wang
| |
Collapse
|
9
|
Stephens KE, Zhou W, Ji Z, Chen Z, He S, Ji H, Guan Y, Taverna SD. Sex differences in gene regulation in the dorsal root ganglion after nerve injury. BMC Genomics 2019; 20:147. [PMID: 30782122 PMCID: PMC6381758 DOI: 10.1186/s12864-019-5512-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pain is a subjective experience derived from complex interactions among biological, environmental, and psychosocial pathways. Sex differences in pain sensitivity and chronic pain prevalence are well established. However, the molecular basis underlying these sex dimorphisms are poorly understood particularly with regard to the role of the peripheral nervous system. Here we sought to identify shared and distinct gene networks functioning in the peripheral nervous systems that may contribute to sex differences of pain in rats after nerve injury. RESULTS We performed RNA-seq on dorsal root ganglia following chronic constriction injury of the sciatic nerve in male and female rats. Analysis from paired naive and injured tissues showed that 1513 genes were differentially expressed between sexes. Genes which facilitated synaptic transmission in naïve and injured females did not show increased expression in males. CONCLUSIONS Appreciating sex-related gene expression differences and similarities in neuropathic pain models may help to improve the translational relevance to clinical populations and efficacy of clinical trials of this major health issue.
Collapse
Affiliation(s)
- Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, School of Medicine, Center for Epigenetics, Johns Hopkins University, Baltimore, MD USA
| | - Weiqiang Zhou
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Zhicheng Ji
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Zhiyong Chen
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Shaoqiu He
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Hongkai Ji
- Department of Biostatics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Yun Guan
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Center for Epigenetics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
10
|
Sriraksa N, Kongsui R, Thongrong S, Duangjai A, Hawiset T. Effect of Azadirachta indica flower extract on functional recovery of sciatic nerve crush injury in rat models of DM. Exp Ther Med 2019; 17:541-550. [PMID: 30651834 DOI: 10.3892/etm.2018.6931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 01/29/2023] Open
Abstract
Chronic hyperglycemia causes nerves to be more susceptible to compression, which often occurs as a result of hyperglycemia-induced oxidative stress. Oxidative stress impairs nerve function and delays nerve recovery. Azadirachta indica, a herb from Thailand, possesses antioxidant and antidiabetic properties. The aim of the present study was therefore to investigate the effect of A. indica flower extract on the functional recovery of a sciatic nerve crush injury in rat models of diabetes mellitus (DM). Male Wistar rats were randomly assigned into seven groups including the control rats, rats with DM subjected to sham surgery and treated with vehicle, and rats with DM subjected to the crush surgery and treated with vehicle or A. indica flower extract at a dose of 250, 500 or 750 mg/kg animal body weight, or with vitamin C. DM was induced using a single intraperitoneal injection of streptozotocin (55 mg/kg animal body weight). Rats subjected to a sciatic nerve crush injury or sham surgery were orally treated with either vehicle, A. indica flower extract or vitamin C for 21 days. Functional recovery was assessed every 3 days using a walking track analysis, foot withdrawal reflex test and rotarod test. At the end of the study, the rats were sacrificed and their left sciatic nerves were harvested in order to determine malondialdehyde levels, superoxide dismutase activity and axon density. The treatment with A. indica flower extract significantly improved functional recovery, especially motor and sensory functions. The extract significantly decreased malondialdehyde levels, and increased superoxide dismutase activity and axon density. The results of the current study indicate that the mechanism underlying the enhanced functional recovery of the sciatic nerve following treatment with A. indica flower extract may be associated with an antioxidative effect. However, further studies are required to confirm the current results.
Collapse
Affiliation(s)
- Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang, Phayao 56000, Thailand
| | - Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang, Phayao 56000, Thailand
| | - Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Mueang, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang, Phayao 56000, Thailand
| | - Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Mueang, Chiang Rai 57100, Thailand
| |
Collapse
|
11
|
Jurick SM, Hoffman SN, Sorg S, Keller AV, Evangelista ND, DeFord NE, Sanderson-Cimino M, Bangen KJ, Delano-Wood L, Deoni S, Jak AJ. Pilot investigation of a novel white matter imaging technique in Veterans with and without history of mild traumatic brain injury. Brain Inj 2018; 32:1256-1265. [DOI: 10.1080/02699052.2018.1493225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah M. Jurick
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | | | - Scott Sorg
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Amber V. Keller
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Nicole E. DeFord
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark Sanderson-Cimino
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sean Deoni
- Department of Pediatrics, Brown University, Providence, RI, USA
| | - Amy J. Jak
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
12
|
Gallaher ZR, Steward O. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Exp Neurol 2018; 303:120-133. [PMID: 29458059 DOI: 10.1016/j.expneurol.2018.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
Axons within the peripheral nervous system are capable of regeneration, but full functional recovery is rare. Recent work has shown that conditional deletion of two key signaling inhibitors of the PI3K and Jak/Stat pathways-phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling-3 (SOCS3), respectively-promotes regeneration of normally non-regenerative central nervous system axons. Moreover, in studies of optic nerve regeneration, co-deletion of both PTEN and SOCS3 has an even greater effect. Here, we test the hypotheses (1) that PTEN deletion enhances axon regeneration following sciatic nerve crush and (2) that PTEN/SOCS3 co-deletion further promotes regeneration. PTENfl/fl and PTEN/SOCS3fl/fl mice received direct injections of AAV-Cre into the fourth and fifth lumbar dorsal root ganglia (DRG) two weeks prior to sciatic nerve crush. Western blot analysis of whole cell lysates from DRG using phospho-specific antibodies revealed that PTEN deletion did not enhance or prolong PI3K signaling following sciatic nerve crush. However, PTEN/SOCS3 co-deletion activated PI3K for at least 7 days post-injury in contrast to controls, where activation peaked at 3 days. Quantification of SCG10-expressing regenerating sensory axons in the sciatic nerve after crush injury revealed longer distance regeneration at 3 days post-injury with both PTEN and PTEN/SOCS3 co-deletion. Additionally, analysis of noxious thermosensation and mechanosensation with PTEN/SOCS3 co-deletion revealed enhanced sensation at 14 and 21 days after crush, respectively, after which all treatment groups reached the same functional plateau. These findings indicate that co-deletion of PTEN and SOCS3 results in modest but measureable enhancement of early regeneration of DRG axons following crush injury.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, Department of Neurosurgery, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Behavioral characterization of neuropathic pain on the glabrous skin areas reinnervated solely by axotomy-regenerative axons after adult rat sciatic nerve crush. Neuroreport 2016; 27:404-14. [PMID: 26926475 DOI: 10.1097/wnr.0000000000000554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In cranial and spinal nerve ganglia, both axotomized primary sensory neurons without regeneration (axotomy-nonregenerative neurons) and spared intact primary sensory neurons adjacent to axotomized neurons (axotomy-spared neurons) have been definitely shown to participate in pain transmission in peripheral neuropathic pain states. However, whether axotomized primary sensory neurons with regeneration (axotomy-regenerative neurons) would be integral components of neural circuits underlying peripheral neuropathic pain states remains controversial. In the present study, we utilized an adult rat sciatic nerve crush model to systematically analyze pain behaviors on the glabrous plantar surface of the hindpaw sural nerve skin territories. To the best of our knowledge, our results for the first time showed that heat hyperalgesia, cold allodynia, mechanical allodynia, and mechanical hyperalgesia emerged and persisted on the glabrous sural nerve skin areas after adult rat sciatic nerve crush. Interestingly, mechanical hyperalgesia was sexually dimorphic. Moreover, with our optimized immunofluorescence staining protocol of free-floating thick skin sections for wide-field epifluorescence microscopic imaging, changes in purely regenerative reinnervation on the same skin areas by axotomized primary sensory afferents were shown to be paralleled by those pathological pain behaviors. To our surprise, Protein Gene Product 9.5-immunoreactive nerve fibers with regular and large varicosities ectopically emigrated into the upper dermis of the glabrous sural nerve skin territories after adult rat sciatic nerve crush. Our results indicated that axotomy-regenerative primary sensory neurons could be critical elements in neural circuits underlying peripheral neuropathic pain states. Besides, our results implied that peripheral neuropathic pain transmitted by axotomy-regenerative primary sensory neurons alone might be a new dimension in the clinical therapy of peripheral nerve trauma beyond regeneration.
Collapse
|
14
|
Differential regenerative ability of sensory and motor neurons. Neurosci Lett 2016; 652:35-40. [PMID: 27818349 DOI: 10.1016/j.neulet.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
After injury, the adult mammalian central nervous system (CNS) lacks long-distance axon regeneration. This review discusses the similarities and differences of sensory and motor neurons, seeking to understand how to achieve functional sensory and motor regeneration. As these two types of neurons respond differently to axotomy, growth environment and treatment, the future challenge will be on how to achieve full recovery in a way that allows regeneration of both types of fibres simultaneously.
Collapse
|