1
|
Dehdashtian A, Timek JH, Svientek SR, Risch MJ, Bratley JV, Riegger AE, Kung TA, Cederna PS, Kemp SWP. Sexually Dimorphic Pattern of Pain Mitigation Following Prophylactic Regenerative Peripheral Nerve Interface (RPNI) in a Rat Neuroma Model. Neurosurgery 2023; 93:1192-1201. [PMID: 37227138 DOI: 10.1227/neu.0000000000002548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jagienka H Timek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Mary Jane Risch
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jared V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Anna E Riegger
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| |
Collapse
|
2
|
Xu C, Wang F, Su C, Guo X, Li J, Lin J. Restoration of aquaporin-4 polarization in the spinal glymphatic system by metformin in rats with painful diabetic neuropathy. Neuroreport 2023; 34:190-197. [PMID: 36719843 PMCID: PMC9981323 DOI: 10.1097/wnr.0000000000001880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Painful diabetic neuropathy (PDN) is a common complication in patients with diabetes, and its underlying mechanism remains unclear. Aquaporin-4 (AQP4) plays a crucial role in removing metabolic waste in the glymphatic system. In this study, we aimed to explore the relationship between the spinal glymphatic system and the effect of metformin on PDN. Male Sprague-Dawley rats were randomly allocated into the control group ( n = 10), the PDN group ( n = 10), and the metformin group ( n = 10). A high-fat and high-glucose diet combined with low-dose streptozotocin was used to induce PDN rats. We detected the clearance rate of the contrast agent in the spinal cord of each rat by MRI to reflect the function of the glymphatic system. Immunofluorescence was used to detect the localization of perivascular AQP4 in astrocyte endfeet. Furthermore, we measured the expression of AQP4 in the spinal cord by Western blot. Compared with the rats in the control group, PDN rats exhibited enhanced mechanical allodynia, decreased clearance rate of the contrast agent in the spinal glymphatic system, reversed AQP4 polarization, and increased expression of AQP4. After being treated with metformin, the rats showed opposite changes in the above characteristics. The analgesic effect of metformin on PDN may be related to its ability to restore spinal AQP4 polarization, thus promoting the function of the spinal glymphatic system.
Collapse
Affiliation(s)
| | | | - Can Su
- Radiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | | | | | | |
Collapse
|
3
|
Wang FX, Xu CL, Su C, Li J, Lin JY. β-Hydroxybutyrate Attenuates Painful Diabetic Neuropathy via Restoration of the Aquaporin-4 Polarity in the Spinal Glymphatic System. Front Neurosci 2022; 16:926128. [PMID: 35898407 PMCID: PMC9309893 DOI: 10.3389/fnins.2022.926128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that β-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer’s disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chi-liang Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Can Su
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Jing-yan Lin,
| |
Collapse
|
4
|
Wang GQ, Wang FX, He YN, Lin JY. Plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy induced by type 2 diabetes mellitus. J Neurosci Res 2022; 100:1908-1920. [PMID: 35796387 PMCID: PMC9541551 DOI: 10.1002/jnr.25104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
The glymphatic system is a recently discovered glial‐dependent macroscopic interstitial waste clearance system that promotes the efficient elimination of soluble proteins and metabolites from the central nervous system. Its anatomic foundation is the astrocytes and aquaporin‐4 (AQP4) water channels on the endfeet of astrocytes. The aim of this study is to evaluate the plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy (PDN) induced by type 2 diabetes mellitus. PDN rats were modeled under a high‐fat and high‐glucose diet with a low dose of streptozotocin. MRI was applied to observe the infiltration and clearance of contrast to indicate the functional variability of the glymphatic system at the spinal cord level. The paw withdrawal threshold was used to represent mechanical allodynia. The numerical change of glial fibrillary acidic protein (GFAP) positive astrocytes was assessed and the polarity reversal of AQP4 protein was measured by immunofluorescence. As a result, deceased contrast infiltration and clearance, enhanced mechanical allodynia, increased number of GFAP positive astrocytes, and reversed polarity of AQP4 protein were found in the PDN rats. The above molecular level changes may contribute to the impairment of the spinal glymphatic system in PDN rats. This study revealed the molecular and functional variations of the spinal glymphatic system in PDN rats and for the first time indicated that there might be a correlation between the impaired spinal glymphatic system and PDN rats.
Collapse
Affiliation(s)
- Guo-Qiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Pain Treatment, Physical and Mental Hospital of Nanchong City, Nanchong, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yi-Na He
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, China
| | - Jing-Yan Lin
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
6
|
Lin JY, Zhu N, He YN, Xu BL, Peng B. Stereological study on the numerical plasticity of myelinated fibers and oligodendrocytes in the rat spinal cord with painful diabetic neuropathy. Neuroreport 2021; 31:319-324. [PMID: 32058434 PMCID: PMC7041624 DOI: 10.1097/wnr.0000000000001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Painful diabetic neuropathy may associate with nerve morphological plasticity in both peripheral and central nervous system. The aim of this study was to determine numerical changes of myelinated fibers in the spinothalamic tract region and oligodendrocytes in the spinal dorsal horn of rats with painful diabetic neuropathy and the effects of metformin on the above changes. Male Sprague–Dawley rats were randomly allocated into the control group (n = 7), the painful diabetic neuropathy group (n = 6) and the painful diabetic neuropathy treated with metformin group (the PDN + M group, n = 7), respectively. Twenty-eight days after medication, numbers of myelinated fibers in the spinothalamic tract and oligodendrocytes in the spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group, number of myelinated fibers in the spinothalamic tract increased significantly in the painful diabetic neuropathy and PDN + M group, compared to the painful diabetic neuropathy group, number of myelinated fibers decreased in the PDN + M group (P < 0.05). As the oligodendrocyte in the spinal dorsal horn was considered, its number increased significantly in the painful diabetic neuropathy group compared to the control and the PDN + M group (P < 0.05), there was no significant difference between the control and the PDN + M group (P > 0.05). Our results indicate that painful diabetic neuropathy is associated with a serial of morphometric plasticity in the rat spinal cord including the numerical increase of the myelinated fibers in the spinothalamic tract and the oligodendrocytes in the spinal dorsal horn. The analgesic effect of metformin against painful diabetic neuropathy might be related to its adverse effects on the above morphometric plasticity.
Collapse
Affiliation(s)
- Jing-Yan Lin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Na Zhu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Chengdu
| | - Yi-Na He
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, Nanchong Central Hospital, Nanchong
| | - Bo-Lin Xu
- Department of Anesthesiology, Santai County People's Hospital (Affiliated Hospital of North Sichuan Medical College in Santai County), Mianyang
| | - Bin Peng
- Research Unit of Electron Microscopy Structures, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2020; 21:45-63. [PMID: 33161784 PMCID: PMC9482886 DOI: 10.1080/14737175.2021.1847645] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson’s disease, Huntington’s disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
Collapse
Affiliation(s)
- Sarah Demaré
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Asha Kothari
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego , La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| |
Collapse
|
8
|
Wang R, Qiu Z, Wang G, Hu Q, Shi N, Zhang Z, Wu Y, Zhou C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur J Pharmacol 2020; 882:173266. [PMID: 32553736 DOI: 10.1016/j.ejphar.2020.173266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023]
Abstract
Numerous studies indicate that the changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons contributes to the development and maintenance of neuropathic pain. Quercetin, a bioflavonoid compound, has been shown to have analgesic effect in several pain models. However, the underlying mechanism for quercetin to allieviate pain is unclear. Therefore, in this study, we observed the effect of quercetin on diabetic neuropathic pain in db/db mice and explored the underlying mechanisms. Our results showed that chronic quercetin treatment alleviated thermal hyperalgesia in db/db mice. Moreover, quercetin administration significantly reduced the total dendritic length, the number of dendritic branches, and the dendritic spine density in the spinal dorsal horn neurons of db/db mice. Meanwhile, the up-regulated expressions of synaptic plasticity-associated proteins postsynaptic density protein 95 (PSD-95) and synaptophysin in spinal dorsal horn of db/db mice were decreased by quercetin treatment. In addition, quercetin treatment reduced the phosphorylated levels of mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6K) in spinal dorsal horn of db/db mice. These results demonstrate that quercetin may alleviate diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons of db/db mice. These findings suggest that quercetin may be a promising therapeutic drug in neuropathic pain.
Collapse
Affiliation(s)
- Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongqin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Nakagawa T, Akimoto N, Hakozaki A, Noma T, Nakamura A, Hayashi Y, Sasaki E, Ozaki N, Furue H. Responsiveness of lumbosacral superficial dorsal horn neurons during the voiding reflex and functional loss of spinal urethral-responsive neurons in streptozotocin-induced diabetic rats. Neurourol Urodyn 2019; 39:144-157. [PMID: 31663175 DOI: 10.1002/nau.24198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS Sensory information from the lower urinary tract (LUT) is conveyed to the spinal cord to trigger and co-ordinate micturition. However, it is not fully understood how spinal dorsal horn neurons are excited during the voiding reflex. In this study, we developed an in vivo technique allowing recording of superficial dorsal horn (SDH) neurons concurrent with intravesical pressure (IVP) during the micturition cycle in both normal and diabetic rats. METHODS Lumbosacral dorsal horn neuronal activity and IVP were recorded from urethane-anesthetized naive and streptozotocin (STZ)-induced diabetic rats. Saline was continuously perfused into the urinary bladder through a cannula to induce micturition. RESULTS We classified SDH neurons into bladder- and urethral-responsive neurons, based on their responsiveness during the voiding reflex. Bladder-responsive SDH neurons responded to the rapid increase in IVP at the start of voiding. In contrast, urethral-responsive SDH neuronal firing increased at the peak IVP and their firing lasted during the voiding phase (the high-frequency oscillations). Urethral-responsive SDH neurons were more sensitive to capsaicin, received C afferent fiber inputs, and were rarely detected in STZ-diabetes rats. Administration of a cyclohexenoic long-chain fatty alcohol (TAC-302), which is reported to promote neurite outgrowth of peripheral nerves in STZ-diabetic rats, prevented the functional loss of spinal urethral response. CONCLUSIONS Sensory information from the bladder and urethra is conveyed separately to different groups of SDH neurons. Functional loss of spinal urethral sensory information through unmyelinated C afferent fibers may contribute to diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Tatsuki Nakagawa
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Hakozaki
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Takahisa Noma
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Ayumi Nakamura
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yukio Hayashi
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Eiji Sasaki
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
10
|
Xu W, Guo Y, Xiang Y, Yang ZW. Is there section deformation resulting in differential change of nuclear numerical densities along the z axis of thick methacrylate or paraffin sections? Microsc Res Tech 2019; 82:1575-1583. [PMID: 31218785 DOI: 10.1002/jemt.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022]
Abstract
The optical disector, a three-dimensional counting frame or probe in stereology, is often positioned in the middle (depth) of a thick section for unbiased nuclear counting. Using 30-40 μm thick methacrylate or paraffin sections for nuclear counting of neurons with the optical disector, however, some studies showed markedly higher nuclear densities at 10% of the section thickness near the top or bottom surface of the section, suggestive of deformation of section along its z axis and thus affecting the number estimation. To verify the findings, this study obtained two sets of 12-14 methacrylate sections (average thicknesses 21.7 and 29.4 μm) and two sets of 12 paraffin sections (average thicknesses 13.8 and 29.2 μm) from mature rat testes. Each section was used to count round spermatid nuclei in the seminiferous epithelium densely packed with the cells, using 3-4 consecutive disectors placed vertically (along the z axis of the section) from the top surface of the section, through the whole section thickness (two sets of methacrylate and paraffin sections) or in 80-83% of the thickness (other sections). The results demonstrated that, overall, there were no considerable nonuniform changes of the nuclear densities along the z axis of the sections.
Collapse
Affiliation(s)
- Wei Xu
- Experimental Teaching Center of Functional Science, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Guo
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Xiang
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zheng-Wei Yang
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
11
|
Metformin attenuates increase of synaptic number in the rat spinal dorsal horn with painful diabetic neuropathy induced by type 2 diabetes: a stereological study. Neurochem Res 2018; 43:2232-2239. [PMID: 30306321 DOI: 10.1007/s11064-018-2642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
In our previous study, we have shown that number of synapses in the L5 segment of spinal dorsal horn increased significantly in a rat model of painful diabetic neuropathy (PDN) induced by high-dose of streptozotocin (an animal model of type 1 diabetes). The aims of this study were: (1) to determine whether high fat diet/low dose streptozotocin-diabetes, a rat model for type 2 diabetes, related PDN was also associated with this synaptic plasticity, (2) to reveal the range of this synaptic plasticity change occurred (in the whole length of spinal dorsal horn or only in the L5 lumbar segment of spinal dorsal horn) and (3) to discover whether treatment with metformin had effect on this synaptic plasticity. Male adult Sprague-Dawley rats were randomly allocated into the control group (n = 7), the PDN group (n = 6) and the PDN treated with metformin (PDN + M) group (n = 7), respectively. 28 days after medication, synaptic and neuronal numbers in the whole length of spinal dorsal horn or in 1 mm length of the L5 segment of spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group and the PDN + M group, number of synapses in the L5 segment of spinal dorsal horn increased significantly in the PDN group (P < 0.05). There was no significant change between the control group and the PDN + M group in terms of the parameters in the L5 segment of the spinal dorsal horn (P > 0.05). Parameters of the whole length of spinal dorsal horn showed no significant changes (P > 0.05). Our results suggest that high fat diet/low dose streptozotocin diabetes related PDN is also associated with a numerical increase of synapses in the L5 segment of spinal dorsal horn but not in the whole length of spinal dorsal horn. Furthermore, the analgesic effect of metformin against PDN is related to its inhibition of numerical increase of synaptic number in the rat spinal dorsal horn.
Collapse
|