1
|
López-Ramos D, López-Bascuas LE, Eustaquio-Martín A, Lopez-Poveda EA. Effects of ipsilateral, contralateral, and bilateral noise precursors on psychoacoustical tuning curves in humans. Hear Res 2024; 453:109111. [PMID: 39276590 DOI: 10.1016/j.heares.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Cochlear tuning and hence auditory frequency selectivity are thought to change in noisy environments by activation of the medial olivocochlear reflex (MOCR). In humans, auditory frequency selectivity is often assessed using psychoacoustical tuning curves (PTCs), a plot of the level required for pure-tone maskers to just mask a fixed-level pure-tone probe as a function of masker frequency. Sometimes, however, the stimuli used to measure a PTC are long enough that they can activate the MOCR by themselves and thus affect the PTC. Here, PTCs for probe frequencies of 500 Hz and 4 kHz were measured in forward masking using short maskers (30 ms) and probes (10 ms) to minimize the activation of the MOCR by the maskers or the probes. PTCs were also measured in the presence of long (300 ms) ipsilateral, contralateral, and bilateral broadband noise precursors to investigate the effect of the ipsilateral, contralateral, and bilateral MOCR on PTC tuning. Four listeners with normal hearing participated in the experiments. At 500 Hz, ipsilateral and bilateral precursors sharpened the PTCs by decreasing the thresholds for maskers with frequencies at or near the probe frequency with minimal effects on thresholds for maskers remote in frequency from the probe. At 4 kHz, by contrast, ipsilateral and bilateral precursors barely affected thresholds for maskers near the probe frequency but broadened PTCs by reducing thresholds for maskers far from the probe. Contralateral precursors barely affected PTCs. An existing computational model was used to interpret the results. The model suggested that despite the apparent differences, the pattern of results is consistent with the ipsilateral and bilateral MOCR inhibiting the cochlear gain similarly at the two probe frequencies and more strongly than the contralateral MOCR.
Collapse
Affiliation(s)
- David López-Ramos
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca 37007 Salamanca, Spain
| | - Luis E López-Bascuas
- Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Universidad Complutense de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Almudena Eustaquio-Martín
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca 37007 Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca 37007 Salamanca, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Sendesen E, Colak H, Korkut Y, Yalcınkaya E, Sennaroglu G. The right ear advantage – a perspective from speech perception in noise test. HEARING, BALANCE AND COMMUNICATION 2023. [DOI: 10.1080/21695717.2023.2181562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Eser Sendesen
- Department of Audiology, Hacettepe University, Ankara, Turkey
| | - Hasan Colak
- Department of Audiology, Hacettepe University, Ankara, Turkey
- Department of Audiology, Baskent University, Ankara, Turkey
| | - Yagız Korkut
- Department of Audiology, Hacettepe University, Ankara, Turkey
| | - Eda Yalcınkaya
- Department of Audiology, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
3
|
Boothalingam S, Goodman SS, MacCrae H, Dhar S. A Time-Course-Based Estimation of the Human Medial Olivocochlear Reflex Function Using Clicks. Front Neurosci 2021; 15:746821. [PMID: 34776849 PMCID: PMC8581223 DOI: 10.3389/fnins.2021.746821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
The auditory efferent system, especially the medial olivocochlear reflex (MOCR), is implicated in both typical auditory processing and in auditory disorders in animal models. Despite the significant strides in both basic and translational research on the MOCR, its clinical applicability remains under-utilized in humans due to the lack of a recommended clinical method. Conventional tests employ broadband noise in one ear while monitoring change in otoacoustic emissions (OAEs) in the other ear to index efferent activity. These methods, (1) can only assay the contralateral MOCR pathway and (2) are unable to extract the kinetics of the reflexes. We have developed a method that re-purposes the same OAE-evoking click-train to also concurrently elicit bilateral MOCR activity. Data from click-train presentations at 80 dB peSPL at 62.5 Hz in 13 young normal-hearing adults demonstrate the feasibility of our method. Mean MOCR magnitude (1.7 dB) and activation time-constant (0.2 s) are consistent with prior MOCR reports. The data also suggest several advantages of this method including, (1) the ability to monitor MEMR, (2) obtain both magnitude and kinetics (time constants) of the MOCR, (3) visual and statistical confirmation of MOCR activation.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - Hilary MacCrae
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,Knowles Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Shaikh MA, Connell K, Zhang D. Controlled (re)evaluation of the relationship between speech perception in noise and contralateral suppression of otoacoustic emissions. Hear Res 2021; 409:108332. [PMID: 34419743 DOI: 10.1016/j.heares.2021.108332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In people with normal hearing (NH), speech perception in noise (SPIN) improves when the speech signal is presented not gated with noise but after a delay. The medial olivocochlear reflex (MOCR) was thought to be involved in the neural dynamic range adaptation (NDRA) responsible for this adaptive SPIN; however, some of the recent studies do not support this hypothesis and suggest that adaptive SPIN involves the NDRA to noise-level statistics, irrespective of MOCR activation. A plausible reason for this discrepancy could be the variations and limitations of the experimental designs used in different studies. Using a relatively controlled and comprehensive study design, this study attempts to verify whether a delay between the delivery of speech and the noise improves the SPIN and whether MOCR mediates such effects. The SPIN was estimated by measuring speech reception thresholds (SRT) in noise under simultaneous-onset and delayed-onset (noise precedes speech onset by 300 ms) conditions. The SPIN in both ears was independently examined for ipsilateral, contralateral, and bilateral noise in women with normal hearing (N = 18; age range, 18-25 years). Contralateral suppression of transient-evoked otoacoustic emissions (CSOAEs) was used to estimate the MOCR based cochlear gain reduction. Under all test conditions, SPIN was improved in delayed-onset than in simultaneous-onset conditions, and the mean improvement in the SRT ranged from 0.7±1.7 to 1.8±1.8 dB. No significant correlation was obtained between CSOAEs and the mean temporal improvement in SRT, suggesting that MOCR may not be a predominant mechanism for the temporal improvement in SPIN.
Collapse
Affiliation(s)
| | - Kylie Connell
- Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| | - Dong Zhang
- Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| |
Collapse
|
5
|
Wendt B, Stadler J, Verhey JL, Hessel H, Angenstein N. Effect of Contralateral Noise on Speech Intelligibility. Neuroscience 2021; 459:59-69. [PMID: 33548367 DOI: 10.1016/j.neuroscience.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023]
Abstract
In patients with strong asymmetric hearing loss, standard clinical practice involves testing speech intelligibility in the ear with the higher hearing threshold by simultaneously presenting noise to the other ear. However, psychoacoustic and functional magnetic resonance imaging (fMRI) studies indicate that this approach may be problematic as contralateral noise has a disruptive effect on task processing. Furthermore, fMRI studies have revealed that the effect of contralateral noise on brain activity depends on the lateralization of task processing. The effect of contralateral noise is stronger when task-relevant stimuli are presented ipsilaterally to the hemisphere that is processing the task. In the present study, we tested the effect of four different levels of contralateral noise on speech intelligibility using the Oldenburg sentence test (OLSA). Cortical lateralization of speech processing was assessed upfront by using a visual speech test with fMRI. Contralateral OLSA noise of 65 or 80 dB SPL significantly reduced word intelligibility irrespective of which ear the speech was presented to. In participants with left-lateralized speech processing, 50 dB SPL contralateral OLSA noise led to a significant reduction in speech intelligibility when speech was presented to the left ear, i.e. when speech was presented ipsilaterally to the hemisphere that is mainly processing speech. Thus, contralateral noise, as used in standard clinical practice, not only prevents listeners from using the information in the better-hearing ear but may also have the unintended effect of hampering central processing of speech.
Collapse
Affiliation(s)
- Beate Wendt
- University Hospital of the Otto von Guericke University Magdeburg, Department of Otorhinolaryngology, Germany
| | - Jörg Stadler
- Leibniz Institute for Neurobiology, Magdeburg, Combinatorial NeuroImaging Core Facility, Germany
| | - Jesko L Verhey
- Otto von Guericke University Magdeburg, Department of Experimental Audiology, Germany
| | - Horst Hessel
- Cochlear Deutschland GmbH & Co. KG, Hannover, Germany
| | - Nicole Angenstein
- Leibniz Institute for Neurobiology, Magdeburg, Combinatorial NeuroImaging Core Facility, Germany.
| |
Collapse
|
6
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|