1
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Update on the Efficacy of Cognitive Rehabilitation After Moderate to Severe Traumatic Brain Injury: A Scoping Review. Arch Phys Med Rehabil 2023; 104:315-330. [PMID: 35921874 DOI: 10.1016/j.apmr.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To identify, categorize, and analyze the methodological issues of cognitive rehabilitation of patients with moderate to severe traumatic brain injury and its efficacy. DATA SOURCES Pubmed and PsycINFO were searched for studies published between 2015 and 2021 using keywords for cognitive intervention and traumatic brain injury. STUDY SELECTION Two independent reviewers selected articles concerning cognitive rehabilitation for adults with traumatic brain injury. Of 458 studies, 97 full-text articles were assessed and 46 met the inclusion criteria. DATA EXTRACTION Data were analyzed by 1 reviewer according to criteria concerning the methodological quality of studies. DATA SYNTHESIS Results showed a large scope of 7 cognitive domains targeted by interventions, delivered mostly in individual sessions (83%) with an integrative cognitive approach (48%). Neuroimaging tools as a measure of outcome remained scarce, featuring in only 20% of studies. Forty-three studies reported significant effects of cognitive rehabilitation, among which 7 fulfilled a high methodological level of evidence. CONCLUSIONS Advances and shortcomings in cognitive rehabilitation have both been highlighted and led us to develop methodological key points for future studies. The choice of outcome measures, the selection of control interventions, and the use of combined rehabilitation should be investigated in further studies.
Collapse
|
4
|
Wang Y, Xu N, Wang R, Zai W. Systematic review and network meta-analysis of effects of noninvasive brain stimulation on post-stroke cognitive impairment. Front Neurosci 2022; 16:1082383. [PMID: 36643019 PMCID: PMC9832390 DOI: 10.3389/fnins.2022.1082383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Objective To systematically assess the effects of Noninvasive Brain Stimulation (NIBS) on post-stroke cognitive impairment (PSCI) and to compare the efficacy of two different NIBS. Methods Computer searches of PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Chinese Biomedical literature Service System (SinoMed), and Wanfang Database were conducted using a combination of free words and subject terms. The search was conducted from the database creation date to 27 November 2022. The risk of bias in the included literature was assessed using the Cochrane Risk Assessment Scale. The quality of the included literature was assessed using the physiotherapy evidence database (PEDro) scale. A standard meta-analysis of study data for each outcome indicator was performed using RevMan 5.4 software. Network meta-analysis was performed using State 14.0 according to the Bayesian framework. Results A total of 18 studies involving 809 patients were included. Meta-analysis shows NIBS significantly improved montreal cognitive assessment (MoCA) scores (standardized mean difference [SMD] = 0.76, 95% confidence interval (CI) 0.49-1.02, P < 0.05), mini-mental state examination (MMSE) scores (SMD = 0.72, 95% CI 0.25-1.20, P < 0.05), and modified barthel index (MBI) and functional independence measurement (FIM) scores (SMD = 0.33, 95% CI 0.11-0.54, P < 0.05) in patients with PSCI. The surface under the cumulative ranking curve (SUCRA) of different NIBS in improving MoCA scores were in the order of transcranial direct current stimulation (tDCS) (SUCRA = 92.4%) and transcranial magnetic stimulation (TMS) (SUCRA = 57.6%). The SUCRA of different NIBS in improving MMSE scores were in the order of tDCS (SUCRA = 81.6%) and TMS (SUCRA = 67.3%). The SUCRA of different NIBS in improving MBI and FIM scores were in the order of tDCS (SUCRA = 78.6%) and TMS (SUCRA = 65.3%). Conclusion The available evidence suggests that NIBS improves cognitive impairment. tDCS appeared more effective than TMS for cognitive function and activities of daily living in PSCI patients. Limited by the number of included studies, more large-sample, multicentre, double-blind, high-quality randomized controlled clinical trials are needed to further confirm this study's results. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022372354.
Collapse
|
5
|
Lago S, Bevilacqua F, Stabile MR, Scarpazza C, Bambini V, Arcara G. Case report: Pragmatic impairment in multiple sclerosis after worsening of clinical symptoms. Front Psychol 2022; 13:1028814. [PMID: 36506966 PMCID: PMC9731094 DOI: 10.3389/fpsyg.2022.1028814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pragmatics, defined as the ability to integrate language and context to communicate effectively, may be impaired in Multiple Sclerosis (MS). We present the case of a patient with active secondary progressive MS who, after a first neuropsychological assessment that evidenced only a slight pragmatic impairment, suffered a sudden worsening of her clinical conditions, treated with corticosteroids. After this clinical worsening, her pragmatic abilities declined markedly, both in comprehension and production. This worsening was accompanied by a decline only in one attention task, in the context of an overall stable cognitive functioning. We conclude that pragmatics may be a domain particularly susceptible to cognitive worsening, highlighting the importance of its assessment in clinical practice.
Collapse
Affiliation(s)
- Sara Lago
- IRCCS San Camillo Hospital, Venice, Italy,Department of Neuroscience, Padova Neuroscience Centre, University of Padova, Padua, Italy,*Correspondence: Sara Lago,
| | | | | | - Cristina Scarpazza
- IRCCS San Camillo Hospital, Venice, Italy,Department of General Psychology, University of Padova, Padua, Italy
| | - Valentina Bambini
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | |
Collapse
|
6
|
Effect of transcranial direct-current stimulation on executive function and resting EEG after stroke: A pilot randomized controlled study. J Clin Neurosci 2022; 103:141-147. [PMID: 35872448 DOI: 10.1016/j.jocn.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effects of transcranial direct current stimulation (tDCS) on post-stroke executive impairment (PSEI) remain controversial. Resting stateelectroencephalogram (EEG) can assist in the diagnosis and assessment of executive dysfunction. OBJECTIVES We aimed to use EEG to explore the effect of tDCS on executive function among stroke patients. METHODS Twenty-four patients with PSEI were randomly divided into experimental and control groups, which received real and sham stimulation, respectively. Anodal electrical stimulation was applied to the left dorsolateral prefrontal lobe (F3). The stimulation intensity was 2 mA for 20 min once daily for 7 days. Executive function was monitored using neuropsychological scales. RESULTS The experimental group outperformed the control group in clinical scale results, with significant differences in the following scores: symbol digital modalities test, TMT-A, TMT-B, and digital span test. In the left central zone, theta band power was significantly higher after anodal electrical stimulation than before. Analysis of the correlation between EEG power and psychometric scores revealed that the power change was positively correlated with the scores on the symbol digital modality test (r = 0.435, p < 0.05). CONCLUSION Anodal tDCS can enhance executive function in patients with PSEI, and tDCS-related improvements are related to the enhancement of theta power in the affected region.
Collapse
|
7
|
Skidmore ER, Shih M, Terhorst L, O’Connor E. Lesion location may attenuate response to strategy training in acute stroke. PM R 2022; 14:329-336. [PMID: 33728742 PMCID: PMC8446102 DOI: 10.1002/pmrj.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Strategy training, a rehabilitation intervention, reduces disability and improves functional skills associated with goal-directed behavior. Stroke lesions impacting selected ventromedial regions of interest associated with initiation of goal-directed behavior may attenuate intervention response. If so, strategy training may not be optimal for people with stroke lesions in these regions. OBJECTIVE To examine whether ventromedial regions of interest attenuate changes in disability status attributed to strategy training. DESIGN Secondary analysis of data from two randomized controlled clinical trials. SETTING Inpatient stroke rehabilitation. PARTICIPANTS People with acute stroke diagnosis and available diagnostic studies enrolled in inpatient rehabilitation randomized controlled studies between 2009 and 2017. INTERVENTION Participants were randomized to strategy training or a control condition in addition to the usual care during inpatient rehabilitation. MAIN OUTCOME MEASURES Diagnostic magnetic resonance imaging studies were retrieved from electronic medical records, and stroke lesion location was characterized by a neuroradiologist. Intervention response was defined by Functional Independence Measure change scores of 22 points or greater. RESULTS Only 186 of 275 participants had diagnostic studies available; 13 patients showed no apparent lesion on their diagnostic study. Among 173 cases, 156 had complete data at discharge (strategy training n = 71, control n = 85). Twenty-five cases had a lesion within a region of interest (strategy training n = 14, control n = 11). Intervention response was attenuated in the strategy training group for those with lesions in regions of interest [χ2 (1, n = 71) = 4.60, P = .03], but not for those in the control group [Fisher exact test, n = 85, P = .19). CONCLUSIONS Lesions in the ventromedial regions of interest may attenuate response to strategy training.
Collapse
Affiliation(s)
- Elizabeth R. Skidmore
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Minmei Shih
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Lauren Terhorst
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences,Data Center, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Erin O’Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| |
Collapse
|
8
|
Boissonnault È, Higgins J, LaGarde G, Barthélemy D, Lamarre C, H Dagher J. Brain stimulation in attention deficits after traumatic brain injury: a literature review and feasibility study. Pilot Feasibility Stud 2021; 7:115. [PMID: 34059152 PMCID: PMC8165970 DOI: 10.1186/s40814-021-00859-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After a traumatic brain injury, disturbances in the attentional processes have a direct negative effect on functional recovery and on return to complex activities. To date, there is no good attention remediation treatment available. The primary objective of this review and pilot study is to provide an overview of the research evidence and to evaluate the feasibility of implementing a tDCS protocol to improve attention disorders in patients with mild complicated to severe subacute TBI, hospitalized in an inpatient rehabilitation facility. Our secondary objective is to extract preliminary data and observational information on participants' response to treatment. METHODS Participants were recruited from a consecutive series of patients admitted to the TBI unit of a subspecialized regional rehabilitation center. They received a 20-min tDCS stimulation 3 times a week for 3 weeks. A neuropsychological evaluation was performed before and after the intervention. We collected participants' sociodemographic and clinical characteristics as well as information about satisfaction, tolerability, and adverse effects. RESULTS One hundred sixty-four patients were admitted between September 2018 and January 2020. One hundred fifty-eight were excluded, and 6 patients with presumed attentional deficits were enrolled. None completed the protocol as intended. No major side effects occurred. CONCLUSION Non-invasive brain neurostimulation is promising to enhance attention deficits in patients with TBI. Implementation of a tDCS protocol to fulfill this purpose in an intensive inpatient rehabilitation center has its limitations. We made recommendations to facilitate the implementation of similar projects in the future. TRIAL REGISTRATION ISRCTN, ISRCTN55243064 . Registered 14 October 2020-retrospectively registered.
Collapse
Affiliation(s)
- Ève Boissonnault
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada. .,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.
| | - Johanne Higgins
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Geneviève LaGarde
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Dorothy Barthélemy
- Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Céline Lamarre
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada.,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Jehane H Dagher
- Physical Medicine and Rehabilitation Service, Université de Montréal, Montreal, QC, Canada.,Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), 6300, avenue de Darlington (Pavillon Gingras), Montréal, QC, H3S 2J4, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
9
|
The Effect of Non-Invasive Brain Stimulation (NIBS) on Executive Functioning, Attention and Memory in Rehabilitation Patients with Traumatic Brain Injury: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11040627. [PMID: 33807188 PMCID: PMC8066265 DOI: 10.3390/diagnostics11040627] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of non-invasive brain stimulation (NIBS) for therapeutic effects on cognitive functions has been explored for populations with traumatic brain injury (TBI). However, there is no systematic NIBS review of TBI cognitive impairment with a focus on stimulation sites and stimulation parameters. The purpose of this study was to conduct a systematic review examining the effectiveness and safety of NIBS for cognitive impairment after a TBI. This study was prospectively registered with the PROSPERO database of systematic reviews (CRD42020183298). All English articles from the following databases were searched from inception up to 31 December 2020: Pubmed/MEDLINE, Scopus, CINAHL, Embase, PsycINFO and CENTRAL. Randomized and prospective controlled trials, including cross-over studies, were included for analysis. Studies with at least five individuals with TBI, whereby at least five sessions of NIBS were provided and used standardized neuropsychological measurement of cognition, were included. A total of five studies met eligibility criteria. Two studies used repetitive transcranial magnetic stimulation (rTMS) and three studies used transcranial direct current stimulation (tDCS). The pooled sample size was 44 individuals for rTMS and 91 for tDCS. Three of five studies combined cognitive training or additional therapy (computer assisted) with NIBS. Regarding rTMS, target symptoms included attention (n = 2), memory (n = 1), and executive function (n = 2); only one study showing significant improvement compared than control group with respect to attention. In tDCS studies, target symptoms included cognition (n = 2), attention (n = 3), memory (n = 3), working memory (WM) (n = 3), and executive function (n = 1); two of three studies showed significant improvement compared to the control group with respect to attention and memory. The evidence for NIBS effectiveness in rehabilitation of cognitive function in TBI is still in its infancy, more studies are needed. In all studies, dorsolateral prefrontal cortex (DLPFC) was selected as the stimulation site, along with the stimulation pattern promoting the activation of the left DLPFC. In some studies, there was a significant improvement compared to the control group, but neither rTMS nor tDCS had sufficient evidence of effectiveness. To the establishment of evidence we need the evaluation of brain activity at the stimulation site and related areas using neuroimaging on how NIBS acts on the neural network.
Collapse
|
10
|
The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2021; 11:diagnostics11020227. [PMID: 33546266 PMCID: PMC7913379 DOI: 10.3390/diagnostics11020227] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: In recent years, the potential of non-invasive brain stimulation (NIBS) for therapeutic effects on cognitive functions has been explored for populations with stroke. There are various NIBS methods depending on the stimulation site and stimulation parameters. However, there is no systematic NIBS review of post-stroke cognitive impairment with a focus on stimulation sites and stimulation parameters. The purpose of this study is to conduct a systematic review and meta-analysis on effectiveness and safety of NIBS for cognitive impairment after a stroke to obtain new insights. This study was prospectively registered with the PROSPERO database of systematic reviews (CRD42020183298). Methods: All English articles from MEDLINE, Scopus, CINAHL, Embase, PsycINFO, and CENTRAL were searched from inception up to 31 December 2020. Randomized and prospective controlled trials were included for the analysis. Studies with at least five individuals post-stroke, whereby at least five sessions of NIBS were provided and using standardized neuropsychological measurement of cognition, were included. We assessed the methodological quality of selected studies as described in the Physiotherapy Evidence Database (PEDro) scoring system. Results: A total of 10 studies met eligibility criteria. Six studies used repetitive transcranial magnetic stimulation (rTMS) and four studies used transcranial direct current stimulation (tDCS). The pooled sample size was 221 and 196 individuals who received rTMS and tDCS respectively. Eight studies combined general rehabilitation, cognitive training, or additional therapy with NIBS. In rTMS studies, target symptoms included global cognition (n = 4), attention (n = 3), memory (n = 4), working memory (WM) (n = 3), and executive function (n = 2). Five studies selected the left dorsolateral prefrontal cortex (DPLFC) as the stimulation target. One rTMS study selected the right DLPFC as the inhibitory stimulation target. Four of six studies showed significant improvement. In tDCS studies, target symptoms included global cognition (n = 2), attention (n = 4), memory (n = 2) and WM (n = 2). Three studies selected the frontal area as the stimulation target. All studies showed significant improvement. In the meta-analysis, rTMS showed a significant effect on attention, memory, WM and global cognition classified by neuropsychological tests. On the other hand, tDCS had no significant effect. Conclusions: In post-stroke patients with deficits in cognitive function, including attention, memory, and WM, NIBS shows promising positive effects. However, this effect is limited, suggesting that further studies are needed with more precision in stimulation sites and stimulation parameters. Future studies using advanced neurophysiological and neuroimaging tools to allow for a network-based approach to treat cognitive symptoms post-stroke with NIBS are warranted.
Collapse
|
11
|
Sex Differences in Neuromodulation Treatment Approaches for Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2020; 35:412-429. [PMID: 33165154 DOI: 10.1097/htr.0000000000000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neuromodulatory brain stimulation interventions for traumatic brain injury (TBI)-related health sequelae, such as psychiatric, cognitive, and pain disorders, are on the rise. Because of disproportionate recruitment and epidemiological reporting of TBI-related research in men, there is limited understanding of TBI development, pathophysiology, and treatment intervention outcomes in women. With data suggesting sex-related variances in treatment outcomes, it is important that these gaps are addressed in emerging, neuromodulatory treatment approaches for TBI populations. METHODS Four research databases (PubMED, EMBASE, CINAHL, and PsycINFO) were electronically searched in February 2020. DESIGN This PRISMA Scoping Review (PRISMA-ScR)-guided report contextualizes the importance of reporting sex differences in TBI + neuromodulatory intervention studies and summarizes the current state of reporting sex differences when investigating 3 emerging interventions for TBI outcomes. RESULTS Fifty-four studies were identified for the final review including 12 controlled trials, 16 single or case series reports, and 26 empirical studies. Across all studies reviewed, 68% of participants were male, and only 7 studies reported sex differences as a part of their methodological approach, analysis, or discussion. CONCLUSION This review is hoped to update the TBI community on the current state of evidence in reporting sex differences across these 3 neuromodulatory treatments of post-TBI sequelae. The proposed recommendations aim to improve future research and clinical treatment of all individuals suffering from post-TBI sequelae.
Collapse
|
12
|
Pink AE, Williams C, Alderman N, Stoffels M. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): A scoping review. Neuropsychol Rehabil 2019; 31:479-505. [PMID: 31880207 DOI: 10.1080/09602011.2019.1706585] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is continued interest in developing effective and innovative treatment approaches to manage and improve outcomes after traumatic brain injury (TBI). Included in this, is the potential use of repetitive transcranial magnetic stimulation (rTMS), a neuromodulatory tool currently recommended by the National Institute for Health and Care Excellence as a treatment for depression. This review considers the application of rTMS after TBI, focussing on its therapeutic efficacy for a broad range of sequalae, whether an optimal and safe rTMS protocol can be determined, and recommendations for future clinical and research work. Five research databases (MEDLINE, CINAHL, PsychINFO, SCOPUS, and Web of Science) were electronically searched, identifying 30 empirical studies (single and multiple subject case reports; randomized controlled trials) for the full review. Evidence suggests that rTMS has the potential to be an efficacious therapeutic intervention for multiple symptoms after TBI, including depression, dizziness, central pain, and visual neglect. However, the picture is less encouraging for prolonged disorders of consciousness and mixed for cognitive outcomes. Overall, rTMS was well-tolerated by patients, although some incidents of side effects and seizures have been reported. Recommendations are made for more comprehensive guidelines and sufficient reporting of rTMS parameters and procedures.
Collapse
Affiliation(s)
- Aimee E Pink
- Department of Psychology, Swansea University, Swansea, UK.,Independent Neurorehabilitation Providers Alliance, Newcastle upon Tyne, UK
| | | | - Nick Alderman
- Department of Psychology, Swansea University, Swansea, UK.,Elysium Neurological Services, Elysium Healthcare, Daventry, UK
| | - Martine Stoffels
- Priory Neurobehavioural Brain Injury Services, Burton Park Brain Injury Hospital, Priory Group, Melton Mowbray, UK
| |
Collapse
|
13
|
Correlation analysis of motor function improvement and brain structure for upper limb paralysis. Neuroreport 2019; 30:77-81. [DOI: 10.1097/wnr.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Kreuzer PM, Downar J, Ridder D, Schwarzbach J, Schecklmann M, Langguth B. A Comprehensive Review of Dorsomedial Prefrontal Cortex rTMS Utilizing a Double Cone Coil. Neuromodulation 2018; 22:851-866. [DOI: 10.1111/ner.12874] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 08/19/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kreuzer
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Jonathan Downar
- Department of PsychiatryUniversity of Toronto Toronto ON Canada
- Institute of Medical Science, University of Toronto Toronto ON Canada
- Krembil Research InstituteUniversity Health Network Toronto ON Canada
- MRI‐Guided rTMS ClinicUniversity Health Network Toronto ON Canada
| | - Dirk Ridder
- Department of Surgical Sciences, Unit of Neurosurgery, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
- Brain Research Center Antwerp for Innovative & Interdisciplinary NeuromodulationSint‐Augustinus Hospital Belgium
| | - Jens Schwarzbach
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Martin Schecklmann
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Berthold Langguth
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| |
Collapse
|