1
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
2
|
Cha J, Yun JH, Choi JH, Lee JH, Choi BT, Shin HK. Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease. J Pharmacopuncture 2024; 27:70-81. [PMID: 38948308 PMCID: PMC11194523 DOI: 10.3831/kpi.2024.27.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hwan Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hye Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Liu X, Yao C, Tang Y, Liu X, Duan C, Wang C, Han F, Xiang Y, Wu L, Li Y, Ji A, Cai T. Role of p53 methylation in manganese-induced cyclooxygenase-2 expression in BV2 microglial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113824. [PMID: 36068751 DOI: 10.1016/j.ecoenv.2022.113824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
Manganese (Mn) is an essential cofactor for many enzymes and plays an important role in normal growth and development. However, excess exposure to manganese (Mn) may be an important environmental factor leading to neurodegeneration. The overexpression of microglial cyclooxygenase-2 (COX-2) plays a key role in neuroinflammation in neurodegenerative diseases. The existing data suggest that Mn can induce neuroinflammation by up-regulating COX-2 expression. However, the mechanisms involved in Mn-induced microglial COX-2 up-regulation remain to be determined. The aim of this study was to investigate the role of p53 in Mn-induced COX-2 expression in microglial cells. The results showed that Mn exposure induced the up-regulation of COX-2 and inhibited the expression of p53 in BV2 microglial cells. The addition of p53 activator and the over-expression of p53 blocked the expression of COX-2 and prostaglandin E2 (PGE2), a COX-2 downstream effector, induced by Mn. Further, Mn increased the methylation of p53 DNA in microglia, while the addition of demethylation reagent 5-Aza-dC enhanced the expression of p53 but decreased the expression of COX-2. These results suggested that Mn may inhibit p53 expression through induction of DNA methylation, which can further induce the expression of COX-2 in microglial cells.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Attenuates Reactive Oxygen Species-Dependent Inflammation and Apoptosis in Porphyromonas gingivalis-Infected Brain Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040740. [PMID: 35453424 PMCID: PMC9024880 DOI: 10.3390/antiox11040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
We recently reported that the periodontopathic bacteria Porphyromonas gingivalis (P. gingivalis) initiates an inflammatory cascade that disrupts the balance of reactive oxygen species (ROS), resulting in apoptotic cell death in brain endothelial cells. An extract from Polygonum multiflorum Thunb., 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside (THSG) has been well-reported to diminish the inflammation in many disease models. However, the effects of THSG in the area of the brain–oral axis is unknown. In this study, we examined the effects of THSG in P. gingivalis-stimulated inflammatory response and apoptotic cell death in brain endothelial cells. THSG treatment remarkably lessened the upregulation of IL-1β and TNF-α proteins in bEnd.3 cells infected with P. gingivalis. Treatment of THSG further ameliorated brain endothelial cell death, including apoptosis caused by P. gingivalis. Moreover, the present study showed that the inhibitory effects on NF-κB p65 and antiapoptotic properties of THSG is through inhibiting the ROS pathway. Importantly, the ROS inhibitory potency of THSG is similar to a ROS scavenger N-Acetyl-L-Cysteine (NAC) and NADPH oxidase inhibitor apocynin. Furthermore, the protective effect of THSG from P. gingivalis infection was further confirmed in primary mouse brain endothelial cells. Taken together, this study indicates that THSG attenuates an ROS-dependent inflammatory response and cell apoptosis in P. gingivalis-infected brain endothelial cells. Our results also suggest that THSG could be a potential herbal medicine to prevent the risk of developing cerebrovascular diseases from infection of periodontal bacteria.
Collapse
|
5
|
Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y. A Review of Pharmacology, Toxicity and Pharmacokinetics of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside. Front Pharmacol 2022; 12:791214. [PMID: 35069206 PMCID: PMC8769241 DOI: 10.3389/fphar.2021.791214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Chen W, Wang P, Chen H, Xing Y, Liu C, Pan G, Dou Z, Han L. The composition differences between small black beans and big black beans from different habitats and its effects on the processing of Polygonum multiflorum. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:767-779. [PMID: 33336449 DOI: 10.1002/pca.3022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The roots of Polygonum multiflorum (PM) serve as a classical traditional Chinese medicine (TCM), which has multiple biological activities. However, many cases of hepatotoxicity in PM have been reported in recent years. Processing PM with black beans decoction is one of the typical processing methods to reduce the hepatotoxicity of PM since ancient times. OBJECTIVES To find potential effective constituents, as well as the optimal variety and origin of black beans for the processing of PM. METHODS Based on ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) analysis, we measured the contents of the two potential toxic compounds (emodin-8-O-glucoside and torachrysone-O-hexose) in raw PM (R-PM), PM processed with big black beans (B-PM) and PM processed with small black beans (S-PM). The flow cytometry method analysed the effects of different processed products of PM on apoptosis of L02 cells in different drug concentration. Proton nuclear magnetic resonance (1 H-NMR) and UHPLC-Q-Orbitrap-MS together with multivariate statistical analysis were used to systematically analyse the different components between small black beans (Small-BB) and big black beans (Big-BB) from 30 different habitats. RESULTS The toxicity was ranked from small to large: S-PM < B-PM < R-PM. Processing PM with black beans could significantly decrease the apoptosis rate of L02 cells, especially when the drug concentration is 80 μg/mL. Besides, we find five differential compounds (α-arabinose, α-galactose, proline, isomer of daidzein and isomer of genistein) may be potential active ingredients. In terms of the black beans collected from 30 producing areas, we find that Small-BB from Weifang in Shandong province was optimum to processing PM, followed by Shangqiu in Henan province, Jilin and Liaoning province. CONCLUSION The ingredients that affect the processing of PM may be attributed to α-arabinose, α-galactose, proline, isomer of daidzein and isomer of genistein in black beans. When the drug concentration is higher, the effect of reducing the hepatotoxicity of PM is better. Besides, Small-BB was more effective than Big-BB for reducing the toxicity of PM, especially Small-BB from Weifang in Shandong, Shangqiu in Henan province and northeast China.
Collapse
Affiliation(s)
- Wanning Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Piao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxi Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, The Chinese Academy of Sciences, Wuhan, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Qiao O, Ji H, Zhang Y, Zhang X, Zhang X, Liu N, Huang L, Liu C, Gao W. New insights in drug development for Alzheimer's disease based on microglia function. Biomed Pharmacother 2021; 140:111703. [PMID: 34083109 DOI: 10.1016/j.biopha.2021.111703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in drug development for Alzheimer's disease (AD) is how to effectively remove deposits of amyloid-beta (Aβ). Recently, the relationship between microglia and Aβ has become a research hotspot. Emerging evidence suggests that Aβ-induced microglia-mediated neuroinflammation further aggravates the decline of cognitive function, while microglia are also involved in the process of Aβ clearance. Hence, microglia have become a potential therapeutic target for the treatment or prevention of AD. An in-depth understanding of the role played by microglia in the development of AD will help us to broaden therapeutic strategies for AD. In this review, we provide an overview of the dual roles of microglia in AD progression: the positive effect of phagocytosis of Aβ and its negative effect on neuroinflammation after over-activation. With the advantages of novel structure, high efficiency, and low toxicity, small-molecule compounds as modulators of microglial function have attracted considerable attention in the therapeutic areas of AD. In this review, we also summarize the therapeutic potential of small molecule compounds (SMCs) and their structure-activity relationship for AD treatment through modulating microglial phagocytosis and inhibiting neuroinflammation. For example, the position and number of phenolic hydroxyl groups on the B ring are the key to the activity of flavonoids, and the substitution of hydroxyl groups on the benzene ring enhances the anti-inflammatory activity of phenolic acids. This review is expected to be useful for developing effective modulators of microglial function from SMCs for the amelioration and treatment of AD.
Collapse
Affiliation(s)
- Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Luqi Huang
- Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
8
|
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F. Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines 2021; 9:biomedicines9050477. [PMID: 33926064 PMCID: PMC8146816 DOI: 10.3390/biomedicines9050477] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Correspondence: ; Tel.: +39-095-7384265
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
9
|
Ding ZB, Han QX, Wang Q, Song LJ, Chu GG, Guo MF, Chai Z, Yu JZ, Xiao BG, Li XY, Ma CG. Fasudil enhances the phagocytosis of myelin debris and the expression of neurotrophic factors in cuprizone-induced demyelinating mice. Neurosci Lett 2021; 753:135880. [PMID: 33838256 DOI: 10.1016/j.neulet.2021.135880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is mainly associated with the neuroinflammation and demyelination in the central nervous system (CNS), in which the failure of remyelination results in persistent neurological dysfunction. Fasudil, a typical Rho kinase inhibitor, has been exhibited beneficial effects on several models of neurodegenerative disorders. In this study, we showed that Fasudil promoted the uptake of myelin debris by microglia via cell experiments and through a cuprizone (CPZ)-induced demyelinating model. In vitro, microglia with phagocytic debris exhibited enhanced expression of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF), and the conditioned medium promoted the maturation of oligodendrocyte precursor cells (OPCs). Meanwhile, Fasudil upregulated TREM2/DAP12 pathway, which positively regulated the phagocytosis of myelin debris by microglia. Similarly, in vivo, Fasudil intervention enhanced the clearance of myelin debris, upregulated the expression of BDNF and GDNF on microglia, and promoted the formation of Oligo2+/PDGFRα+ OPCs and the maturation of MBP + oligodendrocytes in the brain. Our results showed that Fasudil targeted the phagocytic function of microglia, effectively clearing myelin debris produced during pathological process possibly by upregulating TREM2/DAP12 pathway, accompanied by increased expression of BDNF and GDNF. However, the precise mechanism underlying the effects of Fasudil in promoting phagocytic effects and neurotrophic factors remains to be elucidated.
Collapse
Affiliation(s)
- Zhi-Bin Ding
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Li-Juan Song
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Guo-Guo Chu
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Min-Fang Guo
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jie-Zhong Yu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China; Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China.
| | - Xin-Yi Li
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, China.
| | - Cun-Gen Ma
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, 030024, China; Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
10
|
Zha Z, Gao YF, Ji J, Sun YQ, Li JL, Qi F, Zhang N, Jin LY, Xue B, Yang T, Fan YP, Zhao H, Wang L. Bu Shen Yi Sui Capsule Alleviates Neuroinflammation and Demyelination by Promoting Microglia toward M2 Polarization, Which Correlates with Changes in miR-124 and miR-155 in Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5521503. [PMID: 33815654 PMCID: PMC7987454 DOI: 10.1155/2021/5521503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bu Shen Yi Sui capsule (BSYS) is a traditional Chinese medicine prescription that has shown antineuroinflammatory and neuroprotective effects in treating multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE). Microglia play an important role in neuroinflammation. The M1 phenotype of microglia is involved in the proinflammatory process of the disease, while the M2 phenotype plays an anti-inflammatory role. Promoting the polarization of microglia to M2 in MS/EAE is a promising therapeutic strategy. This study is aimed at exploring the effects of BSYS on microglial polarization in mice with EAE. METHODS The EAE model was established by the intraperitoneal injection of pertussis toxin and subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG)35-55 in C57BL/6J mice. The mice were treated with BSYS (3.02 g/kg), FTY720 (0.3 mg/kg), or distilled water by intragastric administration. H&E and LFB staining, transmission electron microscopy, qRT-PCR, immunofluorescence, ELISA, fluorescence in situ hybridization, and western blotting were used to detect the histological changes in myelin, microglial M1/M2 polarization markers, and the expression of key genes involved in EAE. Results and Conclusions. BSYS treatment of EAE mice increased the body weight, decreased the clinical score, and reduced demyelination induced by inflammatory infiltration. BSYS also inhibited the mRNA expression of M1 microglial markers while increasing the mRNA level of M2 markers. Additionally, BSYS led to a marked decrease in the ratio of M1 microglia (iNOS+/Iba1+) and an obvious increase in the number of M2 microglia (Arg1+/Iba1+). In the EAE mouse model, miR-124 expression was decreased, and miR-155 expression was increased, while BSYS treatment significantly reversed this effect and modulated the levels of C/EBP α, PU.1, and SOCS1 (target genes of miR-124 and miR-155). Therefore, the neuroprotective effect of BSYS against MS/EAE was related to promoting microglia toward M2 polarization, which may be correlated with changes in miR-124 and miR-155 in vivo.
Collapse
Affiliation(s)
- Zheng Zha
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Yan-Fang Gao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Ya-Qin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Jun-Ling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Liang-Yun Jin
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Tao Yang
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, China
| | - Yong-Ping Fan
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
EGb 761 inhibits Aβ1-42-induced neuroinflammatory response by suppressing P38 MAPK signaling pathway in BV-2 microglial cells. Neuroreport 2019; 30:434-440. [PMID: 30817685 DOI: 10.1097/wnr.0000000000001223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ginkgo biloba extract EGb 761 possesses a variety of biological effects and has been proved to be beneficial in Alzheimer's disease. This study aimed to explore the anti-inflammatory mechanisms of EGb 761 on the Aβ1-42-induced BV-2 microglial cells. We analyzed the production and gene expression of proinflammatory cytokines by enzyme-linked immunosorbent assay and qRT-PCR, examined phosphorylation of MAPKs by western blot and measured nuclear factor-κB nuclear translocation. Compared with Aβ1-42-treated group, EGb 761 inhibited release and gene expression of tumor necrosis factor-α and interleukin-1β, suppressed nuclear translocation of nuclear factor-κB and attenuated phosphorylation of p38 MAPK in a concentration-dependent manner, but not ERK and JNK. In summary, the results suggested that EGb 761 could attenuate Aβ1-42-induced neuroinflammatory response.
Collapse
|
12
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther 2019; 25:575-590. [PMID: 30676698 PMCID: PMC6488900 DOI: 10.1111/cns.13086] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Aims Baicalin (BAI), a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, has been established to have potent anti‐inflammation and neuroprotective properties; however, its effects during Alzheimer's disease (AD) treatment have not been well studied. This study aimed to investigate the effects of BAI pretreatment on cognitive impairment and neuronal protection against microglia‐induced neuroinflammation and to explore the mechanisms underlying its anti‐inflammation effects. Methods To determine whether BAI plays a positive role in ameliorating the memory and cognition deficits in APP (amyloid beta precursor protein)/PS1 (presenilin‐1) mice, behavioral experiments were conducted. We assessed the effects of BAI on microglial activation, the production of proinflammatory cytokines, and neuroinflammation‐mediated neuron apoptosis in vivo and in vitro using Western blot, RT‐PCR, ELISA, immunohistochemistry, and immunofluorescence. Finally, to elucidate the anti‐inflammation mechanisms underlying the effects of BAI, the protein expression of NLRP3 inflammasomes and the expression of proteins involved in the TLR4/NF‐κB signaling pathway were measured using Western blot and immunofluorescence. Results The results indicated that BAI treatment attenuated spatial memory dysfunction in APP/PS1 mice, as assessed by the passive avoidance test and the Morris water maze test. Additionally, BAI administration effectively decreased the number of activated microglia and proinflammatory cytokines, as well as neuroinflammation‐mediated neuron apoptosis, in APP/PS1 mice and LPS (lipopolysaccharides)/Aβ‐stimulated BV2 microglial cells. Lastly, the molecular mechanistic study revealed that BAI inhibited microglia‐induced neuroinflammation via suppression of the activation of NLRP3 inflammasomes and the TLR4/NF‐κB signaling pathway. Conclusion Overall, the results of the present study indicated that BAI is a promising neuroprotective compound for use in the prevention and treatment of microglia‐mediated neuroinflammation during AD progression.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| |
Collapse
|
13
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
14
|
Zhang L, Chen J. Biological Effects of Tetrahydroxystilbene Glucoside: An Active Component of a Rhizome Extracted from Polygonum multiflorum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3641960. [PMID: 30524653 PMCID: PMC6247474 DOI: 10.1155/2018/3641960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
Polygonum multiflorum Thunb. (PM), a traditional Chinese medicinal herb, has been widely used in the Orient as a tonic and antiaging agent. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9, FW = 406.38928) is one of the active components extracted from PM. TSG is an antioxidant agent, which exhibits remarkable antioxidative activities in vivo and in vitro. The antioxidant effect of TSG is achieved by its radical-scavenging effects. TSG can inhibit apoptosis and protect neuronal cells against injury through multifunctional cytoprotective pathways. TSG performs prophylactic and therapeutic activities against Alzheimer's disease, Parkinson's disease, and cerebral ischemia/reperfusion injury. It is also antiatherosclerotic and anti-inflammatory. However, the mechanisms underlying these pharmacological activities are unclear. This study aimed at reviewing experimental studies and describing the effectiveness and possible mechanisms of TSG.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jianzong Chen
- Traditional Chinese Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|