1
|
Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res 2024; 14:335-338. [PMID: 38680473 PMCID: PMC11053325 DOI: 10.1016/j.jobcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The P2X7 receptor, a member of the P2X receptor family, plays a crucial role in various physiological processes, particularly pain perception. Its expression across immune, neuronal, and glial cells facilitates the release of pro-inflammatory molecules, thereby influencing pain development and maintenance, as evidenced by its association with pulpitis in rats. Notably, P2X receptors such as P2X3 and P2X7 are pivotal in dental pain pathways, making them promising targets for novel analgesic interventions. Leveraging graph neural networks (GNNs) presents an innovative approach to model graph data, aiding in the identification of drug targets and prediction of their efficacy, complementing advancements in genomics and proteomics for therapeutic development. In this study, 921 drug-gene interactions involving P2X receptors were accessed through https://www.probes-drugs.org/. These interactions underwent meticulous annotation, preprocessing, and subsequent utilization to train and assess GNNs. Furthermore, leveraging Cytoscape, the CytoHubba plugin, and other bioinformatics tools, gene expression networks were constructed to pinpoint hub genes within these interactions. Through analysis, SLC6A3, SLC6A2, FGF1, GRK2, and PLA2G2A were identified as central hub genes within the context of P2X receptor-mediated drug-gene interactions. Despite achieving a 65 percent accuracy rate, the GNN model demonstrated suboptimal predictive power for gene-drug interactions associated with oral pain. Hence, further refinements and enhancements are imperative to unlock its full potential in elucidating and targeting pathways underlying oral pain mechanisms.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Abstract
Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Stomatology College of Nanchang University, Nanchang, China
| | - Tian-Hua Zhou
- Basic Medical School, Nanchang University, Nanchang, China
| | - Bao-Kang Chen
- First Clinical Medical College of Nanchang University, Nanchang, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Yin C, Shen W, Zhang M, Wen L, Huang R, Sun M, Gao Y, Xiong W. Inhibitory Effects of Palmatine on P2X7 Receptor Expression in Trigeminal Ganglion and Facial Pain in Trigeminal Neuralgia Rats. Front Cell Neurosci 2021; 15:672022. [PMID: 34366788 PMCID: PMC8339261 DOI: 10.3389/fncel.2021.672022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Trigeminal Neuralgia (TN) refers to recurrent severe paroxysmal pain in the distribution area of the trigeminal nerve, which seriously affects the quality of life of patients. This research applied the chronic constriction injury of the infraorbital nerve (CCI—ION) approach to induce an animal model of TN in rats. The mechanical pain threshold of each group of rats was determined postoperatively; the expression of P2X7 receptor in trigeminal ganglion (TG) was assessed by qRT-PCR, immunofluorescence and Western blot; and the changes of the proinflammatory cytokines IL-1β and TNF-α in serum of rats were detected by ELISA. The results showed that the administration of palmatine in the TN rats could reduce the mechanical pain threshold, significantly decrease the expression of P2X7 receptor in TG, and lower the serum concentrations of IL-1β and TNF-α, compared to the sham group. In addition, the phosphorylation level of p38 in TG of TN rats was significantly decreased after treatment with palmatine. Likewise, inhibition of P2X7 expression by shRNA treatment could effectively counteract the adversary changes of pain sensitivity, IL-1β and TNF-α production, and p38 phosphorylation in TN rats. Our data suggest that palmatine may alleviate mechanical facial pain in TN rats possibly by reducing the expression of P2X7 receptor in TG of TN rats, which may be attributable to inhibiting p38 phosphorylation and reducing the release of IL-1β and TNF-α.
Collapse
Affiliation(s)
- Cancan Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,Hangzhou Stomatology Hospital, Hangzhou, China
| | - Wenhao Shen
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Mingming Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Lequan Wen
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang, China
| | - Ruoyu Huang
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Mengyun Sun
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, China
| |
Collapse
|
4
|
Mai Y, Guo Z, Yin W, Zhong N, Dicpinigaitis PV, Chen R. P2X Receptors: Potential Therapeutic Targets for Symptoms Associated With Lung Cancer - A Mini Review. Front Oncol 2021; 11:691956. [PMID: 34268121 PMCID: PMC8276243 DOI: 10.3389/fonc.2021.691956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Symptoms associated with lung cancer mainly consist of cancer-associated pain, cough, fatigue, and dyspnea. However, underlying mechanisms of lung cancer symptom clusters remain unclear. There remains a paucity of effective treatment to ameliorate debilitating symptoms and improve the quality of life of lung cancer survivors. Recently, extracellular ATP and its receptors have attracted increasing attention among researchers in the field of oncology. Extracellular ATP in the tumor microenvironment is associated with tumor cell metabolism, proliferation, and metastasis by driving inflammation and neurotransmission via P2 purinergic signaling. Accordingly, ATP gated P2X receptors expressed on tumor cells, immune cells, and neurons play a vital role in modulating tumor development, invasion, progression, and related symptoms. P2 purinergic signaling is involved in the development of different lung cancer-related symptoms. In this review, we summarize recent findings to illustrate the role of P2X receptors in tumor proliferation, progression, metastasis, and lung cancer- related symptoms, providing an outline of potential anti-neoplastic activity of P2X receptor antagonists. Furthermore, compared with opioids, P2X receptor antagonists appear to be innovative therapeutic interventions for managing cancer symptom clusters with fewer side effects.
Collapse
Affiliation(s)
- Yonglin Mai
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Guo
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqiang Yin
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peter V Dicpinigaitis
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Zhang WJ, Luo C, Pu FQ, Zhu JF, Zhu Z. The role and pharmacological characteristics of ATP-gated ionotropic receptor P2X in cancer pain. Pharmacol Res 2020; 161:105106. [DOI: 10.1016/j.phrs.2020.105106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
|