1
|
Li MW, Chao TC, Lim LY, Chang HH, Yang SSD. The Acute Effects and Mechanism of Ketamine on Nicotine-Induced Neurogenic Relaxation of the Corpus Cavernosum in Mice. Int J Mol Sci 2023; 24:ijms24086976. [PMID: 37108139 PMCID: PMC10138932 DOI: 10.3390/ijms24086976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to investigate the acute effects and the mechanism of ketamine on nicotine-induced relaxation of the corpus cavernosum (CC) in mice. This study measured the intra-cavernosal pressure (ICP) of male C57BL/6 mice and the CC muscle activities using an organ bath wire myograph. Various drugs were used to investigate the mechanism of ketamine on nicotine-induced relaxation. Direct ketamine injection into the major pelvic ganglion (MPG) inhibited MPG-induced increases in ICP. D-serine/L-glutamate-induced relaxation of the CC was inhibited by MK-801 (N-methyl-D-aspartate (NMDA) receptor inhibitor), and nicotine-induced relaxation was enhanced by D-serine/L-glutamate. NMDA had no effect on CC relaxation. Nicotine-induced relaxation of the CC was suppressed by mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist), lidocaine, guanethidine (an adrenergic neuronal blocker), Nw-nitro-L-arginine (a non-selective nitric oxide synthase inhibitor), MK-801, and ketamine. This relaxation was almost completely inhibited in CC strips pretreated with 6-hydroxydopamine (a neurotoxic synthetic organic compound). Ketamine inhibited cavernosal nerve neurotransmission via direct action on the ganglion and impaired nicotine-induced CC relaxation. The relaxation of the CC was dependent on the interaction of the sympathetic and parasympathetic nerves, which may be mediated by the NMDA receptor.
Collapse
Affiliation(s)
- Ming-Wei Li
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Tze-Chen Chao
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Li-Yi Lim
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Hsi-Hsien Chang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Stephen Shei-Dei Yang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Bu X, Chen Y, Lv P, Fu X, Fu B. Glutamatergic neurons in paraventricular nucleus of the thalamus regulate the recovery from isoflurane anesthesia. BMC Anesthesiol 2022; 22:256. [PMID: 35953781 PMCID: PMC9367068 DOI: 10.1186/s12871-022-01799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Previous studies have demonstrated that the paraventricular nucleus of the thalamus (PVT) is a key wakefulness-controlling nucleus in the thalamus. Therefore, PVT may also be involved in the process of general anesthesia. This study intends to explore the role of PVT in isoflurane anesthesia. Methods In the present study, we used the expression of c-Fos to observe the neuronal activity of PVT neurons under isoflurane anesthesia. We further recorded the effect of isoflurane anesthesia on the calcium signal of PVT glutamatergic neurons in real time with the help of calcium fiber photometry. We finally used chemogenetic technology to specifically regulate PVT glutamatergic neurons, and observed its effect on isoflurane anesthesia and cortical electroencephalography (EEG) in mice. Results We found that glutamatergic neurons of PVT exhibited high activity during wakefulness and low activity during isoflurane anesthesia. Activation of PVT glutamatergic neuronal caused an acceleration in emergence from isoflurane anesthesia accompanied with a decrease in EEG delta power (1–4 Hz). Whereas suppression of PVT glutamatergic neurons induced a delay recovery of isoflurane anesthesia, without affecting anesthesia induction. Conclusions Assuming a pharmacokinetic explanation for results can be excluded, these results demonstrate that the PVT is involved in regulating anesthesia emergence.
Collapse
Affiliation(s)
- Xiaoli Bu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Yiqiu Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Ping Lv
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China. .,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China.
| |
Collapse
|