1
|
Ge R, Luan Z, Guo T, Xia S, Ye J, Xu J. The expression and biological role of complement C1s in esophageal squamous cell carcinoma. Open Life Sci 2024; 19:20220915. [PMID: 39071493 PMCID: PMC11282917 DOI: 10.1515/biol-2022-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The present work focused on investigating the role of the altered expression of complement C1s in proliferation and apoptosis of esophageal squamous cell carcinoma (ESCC) cells and explore its biological functions in ESCC, so as to lay a theoretical foundation and provide certain clinical reference for diagnosing and treating ESCC. Complement C1s expression within ESCC was assessed, and its clinical pathological characteristics in ESCC patients were analyzed. Subsequently, in vitro experiments were performed to further explore the mechanisms by which complement C1s affected ESCC. According to the results, complement C1s expression within ESCC markedly increased relative to adjacent non-cancerous samples. High C1s expression showed positive relation to race, residual lesion, and tumor location of ESCC patients. Complement C1s affected ESCC cell proliferation and apoptosis. Notably, C1s knockdown significantly inhibited ESCC cell proliferation and enhanced their apoptosis. C1s suppressed ESCC cell proliferation via Wnt1/β-catenin pathway and promoted their apoptosis through modulating the expression of Bcl2, Bax, and cleaved-caspase3.
Collapse
Affiliation(s)
- Ruomu Ge
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengyun Luan
- Department of Clinical Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Ting Guo
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Sheng Xia
- School of Medicine, Jiangsu University School, Zhenjiang, Jiangsu, 212000, P.R. China
| | - Jun Ye
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Jie Xu
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| |
Collapse
|
2
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
3
|
Li C, Li Z, Zhang M, Dai J, Wang Y, Zhang Z. An overview of Twist1 in glioma progression and recurrence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:285-301. [PMID: 37833014 DOI: 10.1016/bs.irn.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioma cells are characterized by high migration ability, resulting in the aggressive growth of the tumors and poor prognosis of patients. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis and be elevated during glioma progression and recurrence. Twist1 is a basic helix-loop-helix transcription factor and a key transcription factor involved in the process of EMT. Twist1 is related to glioma mesenchymal change, invasion, heterogeneity, self-renewal of tumor stem cells, angiogenesis, etc., and may be used as a prognostic indicator and therapeutic target for glioma patients. This paper mainly reviews the structural characteristics, regulatory mechanisms, and apparent regulation of Twist1, as well as the roles of Twist1 during glioma progression and recurrence, providing new revelations for its use as a potential drug target and glioma treatment research.
Collapse
Affiliation(s)
- Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Zixuan Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Mengyi Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jiaxuan Dai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yunmin Wang
- The Jining City Center Blood Station, Jining, Shandong Province, P.R. China.
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
4
|
Han W, Shi CT, Chen H, Zhou Q, Ding W, Chen F, Liang ZW, Teng YJ, Shao QX, Dong XQ. Role of LncRNA MIR99AHG in breast cancer: Bioinformatic analysis and preliminary verification. Heliyon 2023; 9:e19805. [PMID: 37809464 PMCID: PMC10559167 DOI: 10.1016/j.heliyon.2023.e19805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Objective This research was aimed to preliminarily explore the clinical roles and potential molecular mechanisms of MIR99AHG and its significant transcripts in breast cancer (BRCA). Methods Public databases were utilized to analyze the expression and prognostic roles of MIR99AHG and its transcripts. Relationships between MIR99AHG expression and immune cells infiltration were analyzed in Xiantao platform. In addition, co-expressed genes and interacting proteins of MIR99AHG were predicted. CancerSEA analyzed its relationship with functional states. Next, CNV status, DNA methylation, interacting transcription factors (TFs) and ceRNA network were analyzed to explore its possible mechanisms. Then, RNA ISH and FISH assays were used to detect its expression and location in BRCA tissues and cell lines, respectively. Finally, qRT-PCR was utilized to investigate MIR99AHG expression in cell lines. Results Compared with the corresponding normal tissues, MIR99AHG expression levels were lower in all BRCA subtypes, and luminal B's was the lowest one. And MIR99AHG expression was negatively related to the tumor stage. In addition, 4 transcripts (ENST00000619222.4, ENST00000418813.6, ENST00000602901.5 and ENST00000453910.5) of MIR99AHG showed significant differences in the expression. Databases also suggested that the high MIR99AHG expression levels indicated good prognosis, especially in patients without lymph node metastasis. Xiantao found that MIR99AHG was positively related to 17 immune cells and negatively linked with 2 immune cells. CancerSEA analysis showed no relationships between MIR99AHG and functional states. From GEPIA and BCIP databases, 19 co-expressed genes were highly related to these four significant transcripts of MIR99AHG. StarBase, RNAct and HDOCK showed that several tumor-associated proteins, including U2AF65, hnRNPC, AEBP2, CHIC1 and so on, might interact with MIR99AHG. Genetically, BRCA had a higher proportion of MIR99AHG CNV loss than CNV gain, and the high level of DNA methylation indicated a good prognosis. Furthermore, 19 TFs were predicted to combine with the promoter of MIR99AHG. Then, we screened out 10 miRNAs potentially interacting with the significant transcripts of MIR99AHG, and five were significantly increased in breast tumors compared to normal tissues, including miR-194-5p, miR-320 b and so on, which could combine 14 mRNAs. Through ISH and FISH assays, we verified that MIR99AHG was down-regulated in BRCA samples and cell lines in comparison to non-tumor tissues and mammary epithelial cell line (MCF10A), and MIR99AHG was located both in cytoplasm and nucleus. qRT-PCR assay also showed the lower expression of MIR99AHG in breast cancer cells than that in MCF10A. Conclusion These results indicate that MIR99AHG can be a favorable prognostic indicator for BRCA. ENST00000619222.4, ENST00000418813.6, ENST00000602901.5 and ENST00000453910.5 are significant transcripts and their down-regulation may play crucial roles in the progression of BRCA.
Collapse
Affiliation(s)
- Wei Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Chun-tao Shi
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu, 214000, PR China
| | - Hua Chen
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Qin Zhou
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Wei Ding
- Ultrasonic Department, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Fang Chen
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Zhi-wei Liang
- Central Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Ya-jie Teng
- Central Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, PR China
| | - Qi-xiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiao-qiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| |
Collapse
|
5
|
Wang S, Liu X, Meng Z, Feng Q, Lin Y, Niu H, Yu C, Zong Y, Guo L, Yang W, Ma Y, Zhang W, Li C, Yang Y, Wang W, Gao X, Hu Y, Liu C, Nie L. DCBLD2 regulates vascular hyperplasia by modulating the platelet derived growth factor receptor-β endocytosis through Caveolin-1 in vascular smooth muscle cells. FASEB J 2022; 36:e22488. [PMID: 35929441 DOI: 10.1096/fj.202200156rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
DCBLD2 is a neuropilin-like transmembrane protein that is up-regulated during arterial remodeling in humans, rats, and mice. Activation of PDGFR-β via PDGF triggers receptor phosphorylation and endocytosis. Subsequent activation of downstream signals leads to the stimulation of phenotypic conversion of VSMCs and arterial wall proliferation, which are common pathological changes in vascular remodeling diseases such as atherosclerosis, hypertension, and restenosis after angioplasty. In this study, we hypothesized that DCBLD2 regulates neointimal hyperplasia through the regulation of PDGFR-β endocytosis of vascular smooth muscle cells (VSMCs) through Caveolin-1 (Cav-1). Compared with wild-type (WT) mice or control littermate mice, the germline or VSMC conditional deletion of the Dcbld2 gene resulted in a significant increase in the thickness of the tunica media in the carotid artery ligation. To elucidate the underlying molecular mechanisms, VSMCs were isolated from the aorta of WT or Dcbld2-/- mice and were stimulated with PDGF. Western blotting assays demonstrated that Dcbld2 deletion increased the PDGF signaling pathway. Biotin labeling test and membrane-cytosol separation test showed that after DCBLD2 was knocked down or knocked out, the level of PDGFR-β on the cell membrane was significantly reduced, while the amount of PDGFR-β in the cytoplasm increased. Co-immunoprecipitation experiments showed that after DCBLD2 gene knock-out, the binding of PDGFR-β and Cav-1 in the cytoplasm significantly increased. Double immunofluorescence staining showed that PDGFR-β accumulated Cav-1/lysosomes earlier than for control cells, which indicated that DCBLD2 gene knock-down or deletion accelerated the endocytosis of PDGF-induced PDGFR-β in VSMCs. In order to confirm that DCBLD2 affects the relationship between Cav-1 and PDGFR-β, proteins extracted from VSMCs cultured in vitro were derived from WT and Dcbld2-/- mice, whereas co-immunoprecipitation suggested that the combination of DCBLD2 and Cav-1 reduced the bond between Cav-1 and PDGFR-β, and DCBLD2 knock-out was able to enhance the interaction between Cav-1 and PDGFR-β. Therefore, the current results suggest that DCBLD2 may inhibit the caveolae-dependent endocytosis of PDGFR-β by anchoring the receptor on the cell membrane. Based on its ability to regulate the activity of PDGFR-β, DCBLD2 may be a novel therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Zeqi Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Honglin Niu
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yuehua Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yunran Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xurui Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Laboratory Animal Science and Key Laboratory of Animal Science of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lei Nie
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|