1
|
No evidence for auditory N1 dishabituation in healthy adults after presentation of rare novel distractors. Int J Psychophysiol 2022; 174:1-8. [DOI: 10.1016/j.ijpsycho.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022]
|
2
|
Zeng Y, Fiorentino R, Zhang J. Electrophysiological Signatures of Perceiving Alternated Tone in Mandarin Chinese: Mismatch Negativity to Underlying Tone Conflict. Front Psychol 2021; 12:735593. [PMID: 34646215 PMCID: PMC8504678 DOI: 10.3389/fpsyg.2021.735593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Although phonological alternation is prevalent in languages, the process of perceiving phonologically alternated sounds is poorly understood, especially at the neurolinguistic level. We examined the process of perceiving Mandarin 3rd tone sandhi (T3 + T3 → T2 + T3) with a mismatch negativity (MMN) experiment. Our design has two independent variables (whether the deviant undergoes tone sandhi; whether the standard and the deviant have matched underlying tone). These two independent variables modulated ERP responses in both the first and the second syllables. Notably, despite the apparent segmental conflict between the standard and the deviant in all conditions, MMN is only observed when neither the standard nor the deviant undergoes tone sandhi, suggesting that discovering the underlying representation of an alternated sound could interfere with the generation of MMN. A tentative model with three hypothesized underlying processing mechanisms is proposed to explain the observed latency and amplitude differences across conditions. The results are also discussed in light of the potential electrophysiological signatures involved in the process of perceiving alternated sounds.
Collapse
Affiliation(s)
- Yuyu Zeng
- Phonetics and Psycholinguistics Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States.,Neurolinguistics and Language Processing Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| | - Robert Fiorentino
- Neurolinguistics and Language Processing Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| | - Jie Zhang
- Phonetics and Psycholinguistics Laboratory, Department of Linguistics, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
O'Reilly JA. Roving oddball paradigm elicits sensory gating, frequency sensitivity, and long-latency response in common marmosets. IBRO Neurosci Rep 2021; 11:128-136. [PMID: 34622244 PMCID: PMC8482433 DOI: 10.1016/j.ibneur.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mismatch negativity (MMN) is a candidate biomarker for neuropsychiatric disease. Understanding the extent to which it reflects cognitive deviance-detection or purely sensory processes will assist practitioners in making informed clinical interpretations. This study compares the utility of deviance-detection and sensory-processing theories for describing MMN-like auditory responses of a common marmoset monkey during roving oddball stimulation. The following exploratory analyses were performed on an existing dataset: responses during the transition and repetition sequence of the roving oddball paradigm (standard -> deviant/S1 -> S2 -> S3) were compared; long-latency potentials evoked by deviant stimuli were examined using a double-epoch waveform subtraction; effects of increasing stimulus repetitions on standard and deviant responses were analyzed; and transitions between standard and deviant stimuli were divided into ascending and descending frequency changes to explore contributions of frequency-sensitivity. An enlarged auditory response to deviant stimuli was observed. This decreased exponentially with stimulus repetition, characteristic of sensory gating. A slow positive deflection was viewed over approximately 300–800 ms after the deviant stimulus, which is more difficult to ascribe to afferent sensory mechanisms. When split into ascending and descending frequency transitions, the resulting difference waveforms were disproportionally influenced by descending frequency deviant stimuli. This asymmetry is inconsistent with the general deviance-detection theory of MMN. These findings tentatively suggest that MMN-like responses from common marmosets are predominantly influenced by rapid sensory adaptation and frequency preference of the auditory cortex, while deviance-detection may play a role in long-latency activity.
Collapse
Affiliation(s)
- Jamie A O'Reilly
- College of Biomedical Engineering, Rangsit University, 52/347 Muang-Ake, Phaholyothin Road, Pathumthani 12000, Thailand
| |
Collapse
|
4
|
Rosburg T, Mager R. The reduced auditory evoked potential component N1 after repeated stimulation: Refractoriness hypothesis vs. habituation account. Hear Res 2020; 400:108140. [PMID: 33316574 DOI: 10.1016/j.heares.2020.108140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023]
Abstract
Similar to other event-related potential (ERP) components, the amplitude of the auditory evoked N1 depends on the interstimulus interval (ISI). At ISIs > 0.4 s, the amplitude of the N1 increases with longer ISIs, until it saturates at ISIs around 10 s. This amplitude increase with increasing ISI has been conceptualized as a function of N1 recovery or N1 refractoriness. Habituation (as a simple form of learning) represents an elaborated, opposing account for such stimulus repetition effects. For passive oddball experiments (stimulation protocols with frequent standards and rare deviants), the two accounts make different predictions. According to the habituation account, the presentation of small deviants should lead to an increased N1 for subsequent standards (= dishabituation); according to the N1 refractoriness account, there should be no or just minor effects on the N1. In the current study, we tested these predictions and compared the ERPs to standards after small deviants and to standards preceded by other standards. We observed that the ERPs to standards after small deviants were characterized by a small mismatch negativity with an onset latency > 150 ms, but the N1 to standards after deviants did not differ from the N1 to standards preceded by other standards. This negative finding is in line with other previous studies that were also not able to reveal evidence for N1 dishabituation. Aside from this repeated lack of evidence for dishabituation, the N1 habituation account is challenged by the finding that the N1 decrease is stronger for more intense stimuli. Overall, the current and previous findings are more compatible with the N1 refractoriness account, although the mechanisms underlying N1 refractoriness remain to be elucidated. Knowledge about these mechanisms would also help to understand why N1 deficits in schizophrenia are more pronounced at longer ISIs.
Collapse
Affiliation(s)
- Timm Rosburg
- Basel University Hospital, Department of Clinical Research, Evidence-based Insurance Medicine (EbIM), Spitalstrasse 12, CH-4031 Basel, Switzerland.
| | - Ralph Mager
- Basel University, University Psychiatric Clinics, Forensic Department, Basel, Switzerland
| |
Collapse
|
5
|
Silva DMR, Melges DB, Rothe-Neves R. N1 response attenuation and the mismatch negativity (MMN) to within- and across-category phonetic contrasts. Psychophysiology 2017; 54:591-600. [PMID: 28169421 DOI: 10.1111/psyp.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
According to the neural adaptation model of the mismatch negativity (MMN), the sensitivity of this event-related response to both acoustic and categorical information in speech sounds can be accounted for by assuming that (a) the degree of overlapping between neural representations of two sounds depends on both the acoustic difference between them and whether or not they belong to distinct phonetic categories, and (b) a release from stimulus-specific adaptation causes an enhanced N1 obligatory response to infrequent deviant stimuli. On the basis of this view, we tested in Experiment 1 whether the N1 response to the second sound of a pair (S2 ) would be more attenuated in pairs of identical vowels compared with pairs of different vowels, and in pairs of exemplars of the same vowel category compared with pairs of exemplars of different categories. The psychoacoustic distance between S1 and S2 was the same for all within-category and across-category pairs. While N1 amplitudes decreased markedly from S1 to S2 , responses to S2 were quite similar across pair types, indicating that the attenuation effect in such conditions is not stimulus specific. In Experiment 2, a pronounced MMN was elicited by a deviant vowel sound in an across-category oddball sequence, but not when the exact same deviant vowel was presented in a within-category oddball sequence. This adds evidence that MMN reflects categorical phonetic processing. Taken together, the results suggest that different neural processes underlie the attenuation of the N1 response to S2 and the MMN to vowels.
Collapse
Affiliation(s)
- Daniel M R Silva
- Graduate Program in Neuroscience, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Danilo B Melges
- Graduate Program in Electrical Engineering, Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rui Rothe-Neves
- Phonetics Lab, Faculty of Letters, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Shin KS, Kim JS, Kim SN, Koh Y, Jang JH, An SK, O’Donnell BF, Chung CK, Kwon JS. Aberrant auditory processing in schizophrenia and in subjects at ultra-high-risk for psychosis. Schizophr Bull 2012; 38:1258-67. [PMID: 22021663 PMCID: PMC3494059 DOI: 10.1093/schbul/sbr138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The N1 and the mismatch negativity (MMN) responses observed in electroencephalographic and magnetoencephalographic (MEG) recordings reflect sensory processing, sensory memory, and adaptation and are usually abnormal in patients with schizophrenia. However, their differential sensitivity to ultra-high-risk (UHR) status is controversial. The current study evaluated the sensitivity of MEG N1m, N1m adaptation, and magnetic counterpart of MMN (MMNm) in 16 UHR subjects, 15 schizophrenia patients, and 18 healthy controls (HCs) during a passive auditory oddball task. N1m adaptation was assessed using the difference in N1m dipole moment between the first and last standard tones in a standard stimulus sequence. N1m adaptation occurred in HCs, whereas neither the UHR nor the schizophrenia groups showed adaptation to the standard tone on repeated presentations. The UHR group had values between those for HCs and schizophrenia patients. Additionally, MMNm dipole moment was reduced in both the UHR and patient groups compared with HCs, whereas the UHR and schizophrenia groups did not differ from each other. These findings indicated that both N1m adaptation and MMNm were altered in UHR subjects and in schizophrenia patients, despite unaffected N1m dipole moment to the first standard tones. Moreover, both UHR and schizophrenia groups failed to show adaptation of the N1m to repeated standard tones. This failure in adaptation was more severe in patients than UHR subjects, suggesting that auditory adaptation may be sensitive to the progression of the illness and be an early biomarker of UHR for psychosis. Deficits in auditory sensory memory, on the other hand, may be similarly impaired in both groups.
Collapse
Affiliation(s)
- Kyung Soon Shin
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University - Medical Research Center, Seoul, Korea
| | - June Sic Kim
- Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Yuri Koh
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University - Medical Research Center, Seoul, Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Suk Kyoon An
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Chun Kee Chung
- Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Soo Kwon
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University - Medical Research Center, Seoul, Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea,Department of Brain and Cognitive Science-World Class University Program, Seoul National University College of Natural Science, Seoul, Korea,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Seoul National University College of Medicine, 101 Daehakno, Chongno-gu, Seoul 110-744, Republic of Korea; tel: +82-2-2072-2972, fax: +82-2-747-9063, e-mail:
| |
Collapse
|
7
|
Asymmetric cortical adaptation effects during alternating auditory stimulation. PLoS One 2012; 7:e34367. [PMID: 22470563 PMCID: PMC3314604 DOI: 10.1371/journal.pone.0034367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
The present study investigates hemispheric asymmetries in the neural adaptation processes occurring during alternating auditory stimulation. Stimuli were two monaural pure tones having a frequency of 400 or 800 Hz and a duration of 500 ms. Electroencephalogram (EEG) was recorded from 14 volunteers during the presentation of the following stimulus sequences, lasting 12 s each: 1) evoked potentials (EP condition, control), 2) alternation of frequency and ear (FE condition), 3) alternation of frequency (F condition), and 4) alternation of ear (E condition). Main results showed that in the central area of the left hemisphere (around C3 site) the N100 response underwent adaptation in all patterns of alternation, whereas in the same area of the right hemisphere the tones presented at the right ear in the FE produced no adaptation. Moreover, the responses to right-ear stimuli showed a difference between hemispheres in the E condition, which produced less adaptation in the left hemisphere. These effects are discussed in terms of lateral symmetry as a product of hemispheric, pathway and ear asymmetries.
Collapse
|
8
|
Laufer I, Negishi M, Constable RT. Comparator and non-comparator mechanisms of change detection in the context of speech--an ERP study. Neuroimage 2009; 44:546-62. [PMID: 18938250 PMCID: PMC2643129 DOI: 10.1016/j.neuroimage.2008.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/11/2008] [Accepted: 09/09/2008] [Indexed: 11/25/2022] Open
Abstract
Automatic change detection reflects a cognitive memory-based comparison mechanism as well as a sensorial non-comparator mechanism based on differential states of refractoriness. The purpose of this study was to examine whether the comparator mechanism of the mismatch negativity component (MMN) is differentially affected by the lexical status of the deviant. Event-related potential (ERP) data was collected during an "oddball" paradigm designed to elicit the MMN from 15 healthy subjects that were involved in a counting task. Topography pattern analysis and source estimation were utilized to examine the deviance (deviants vs. standards), cognitive (deviants vs. control counterparts) and refractoriness (standards vs. control counterparts) effects elicited by standard-deviant pairs ("deh-day"; "day-deh"; "teh-tay") embedded within "oddball" blocks. Our results showed that when the change was salient regardless of lexical status (i.e., the /e:/ to /eI/ transition) the response tapped the comparator based-mechanism of the MMN which was located in the cuneus/posterior cingulate, reflected sensitivity to the novelty of the auditory object, appeared in the P2 latency range and mainly involved topography modulations. In contrast, when the novelty was low (i.e., the /eI/ to /e:/ transition) an acoustic change complex was elicited which involved strength modulations over the P1/N1 range and implicated the middle temporal gyrus. This result pattern also resembled the one displayed by the non-comparator mechanism. These findings suggest spatially and temporally distinct brain activities of comparator mechanisms of change detection in the context of speech.
Collapse
Affiliation(s)
- Ilan Laufer
- Department of Diagnostic Radiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06520-8043, USA.
| | | | | |
Collapse
|