1
|
Zaky MH, Shoorangiz R, Poudel GR, Yang L, Innes CRH, Jones RD. Conscious but not thinking-Mind-blanks during visuomotor tracking: An fMRI study of endogenous attention lapses. Hum Brain Mapp 2024; 45:e26781. [PMID: 39023172 PMCID: PMC11256154 DOI: 10.1002/hbm.26781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Attention lapses (ALs) are complete lapses of responsiveness in which performance is briefly but completely disrupted and during which, as opposed to microsleeps, the eyes remain open. Although the phenomenon of ALs has been investigated by behavioural and physiological means, the underlying cause of an AL has largely remained elusive. This study aimed to investigate the underlying physiological substrates of behaviourally identified endogenous ALs during a continuous visuomotor task, primarily to answer the question: Were the ALs during this task due to extreme mind-wandering or mind-blanks? The data from two studies were combined, resulting in data from 40 healthy non-sleep-deprived subjects (20M/20F; mean age 27.1 years, 20-45). Only 17 of the 40 subjects were used in the analysis due to a need for a minimum of two ALs per subject. Subjects performed a random 2-D continuous visuomotor tracking task for 50 and 20 min in Studies 1 and 2, respectively. Tracking performance, eye-video, and functional magnetic resonance imaging (fMRI) were recorded simultaneously. A human expert visually inspected the tracking performance and eye-video recordings to identify and categorise lapses of responsiveness as microsleeps or ALs. Changes in neural activity during 85 ALs (17 subjects) relative to responsive tracking were estimated by whole-brain voxel-wise fMRI and by haemodynamic response (HR) analysis in regions of interest (ROIs) from seven key networks to reveal the neural signature of ALs. Changes in functional connectivity (FC) within and between the key ROIs were also estimated. Networks explored were the default mode network, dorsal attention network, frontoparietal network, sensorimotor network, salience network, visual network, and working memory network. Voxel-wise analysis revealed a significant increase in blood-oxygen-level-dependent activity in the overlapping dorsal anterior cingulate cortex and supplementary motor area region but no significant decreases in activity; the increased activity is considered to represent a recovery-of-responsiveness process following an AL. This increased activity was also seen in the HR of the corresponding ROI. Importantly, HR analysis revealed no trend of increased activity in the posterior cingulate of the default mode network, which has been repeatedly demonstrated to be a strong biomarker of mind-wandering. FC analysis showed decoupling of external attention, which supports the involuntary nature of ALs, in addition to the neural recovery processes. Other findings were a decrease in HR in the frontoparietal network before the onset of ALs, and a decrease in FC between default mode network and working memory network. These findings converge to our conclusion that the ALs observed during our task were involuntary mind-blanks. This is further supported behaviourally by the short duration of the ALs (mean 1.7 s), which is considered too brief to be instances of extreme mind-wandering. This is the first study to demonstrate that at least the majority of complete losses of responsiveness on a continuous visuomotor task are, if not due to microsleeps, due to involuntary mind-blanks.
Collapse
Affiliation(s)
- Mohamed H. Zaky
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of Electronics and Communications EngineeringArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
- Wearables, Biosensing, and Biosignal Processing LaboratoryArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
| | - Reza Shoorangiz
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Govinda R. Poudel
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Mary Mackillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Le Yang
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
| | - Carrie R. H. Innes
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
| | - Richard D. Jones
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
2
|
Coiner B, Pan H, Bennett ML, Bodien YG, Iyer S, O'Neil-Pirozzi TM, Leung L, Giacino JT, Stern E. Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct Funct 2019; 224:2603-2617. [PMID: 31407103 DOI: 10.1007/s00429-019-01932-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
The human eye movement network is a complex system that requires the integration of sensory, motor, attentional, and executive processes. Here, we review the neuroanatomy of the eye movement network with an emphasis on functional neuroimaging applications. We consolidate the literature into a concise resource designed to be immediately accessible and applicable to diverse research interests, and present the novel Functional Oculomotor System (FOcuS) Atlas-a tool in stereotaxic space that will simplify and standardize the inclusion of the eye movement network in future functional neuroimaging studies. We anticipate this review and the FOcuS Atlas will facilitate increased examination of the eye movement network across disciplines leading to a thorough understanding of how eye movement network function contributes to higher-order cognition and how it is integrated with other brain networks. Furthermore, functional examination of the eye movement network in patient populations offers the potential for deeper insight into the role of eye movement circuitry in functional network activity, diagnostic assessments, and the indications for augmentative communication systems that rely on eye movement control.
Collapse
Affiliation(s)
- Benjamin Coiner
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Eskind Family Biomedical Library and Learning Center, Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN, 37240, USA
| | - Hong Pan
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Monica L Bennett
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Yelena G Bodien
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, MA, 02129, USA
| | - Swathi Iyer
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,The MathWorks, Inc, 1 Apple Hill Drive, Natick, MA, 01760, USA
| | - Therese M O'Neil-Pirozzi
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, MA, 02129, USA.,Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Lorene Leung
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Joseph T Giacino
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, MA, 02129, USA
| | - Emily Stern
- Department of Psychiatry, Brigham and Women's Hospital, 221 Longwood Avenue, BLI442, 75 Francis St, Boston, MA, 02115, USA. .,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA. .,Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Dieterich M, Müller-Schunk S, Stephan T, Bense S, Seelos K, Yousry TA. Functional magnetic resonance imaging activations of cortical eye fields during saccades, smooth pursuit, and optokinetic nystagmus. Ann N Y Acad Sci 2009; 1164:282-92. [PMID: 19645913 DOI: 10.1111/j.1749-6632.2008.03718.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Saccades, smooth pursuit, and optokinetic nystagmus (OKN) are three basic eye movements in our ocular motor repertoire that enable us to explore the visual field. These eye movements are cortically controlled in different cortical eye fields, including the frontal eye fields (FEF) and parietal eye fields (PEF), as well as the motion-sensitive visual area MT+/V5. It is not known if this cortical control is organized in parallel cortico-cortical networks or in adjacent subregions of one system. Nor do we know where the specific eye fields are exactly located. Functional magnetic resonance imaging (fMRI) was used to investigate these open questions about the FEF, PEF, and MT+/V5. Activations of the cortical network of eye-movement control were found in the frontal, parietal, and occipital cortex. While the activation pattern for OKN was not a combination of the patterns for saccades and smooth pursuit, the results suggest that cortical control of OKN occurs in a network parallel to that of saccades and smooth pursuit. Furthermore, a division of the FEF and the PEF into two parts was confirmed for the three ocular motor tasks, as well as a division within each of the three paradigms. MT+/V5 showed two partitions only for saccades, but not for smooth pursuit or OKN.
Collapse
Affiliation(s)
- Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|