1
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
2
|
Trippe L, Nava A, Frank A, Nubbemeyer U. Synthesis of Enantiopure 6,11‐Methylene Lipoxin B
4
Methyl Ester. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lukas Trippe
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 D-55128 Mainz Germany
| | - Analuisa Nava
- BASF Lampertheim GmbH Chemiestr. 22 68623 Lampertheim Germany
| | - Andrea Frank
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 D-55128 Mainz Germany
| | - Udo Nubbemeyer
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 D-55128 Mainz Germany
| |
Collapse
|
3
|
Börgeson E, Wallenius V, Syed GH, Darshi M, Lantero Rodriguez J, Biörserud C, Ragnmark Ek M, Björklund P, Quiding-Järbrink M, Fändriks L, Godson C, Sharma K. AICAR ameliorates high-fat diet-associated pathophysiology in mouse and ex vivo models, independent of adiponectin. Diabetologia 2017; 60:729-739. [PMID: 28188334 PMCID: PMC6518112 DOI: 10.1007/s00125-017-4211-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS In this study, we aimed to evaluate the therapeutic potential of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase, for ameliorating high-fat diet (HFD)-induced pathophysiology in mice. We also aimed to determine whether the beneficial effects of AICAR were dependent on adiponectin. Furthermore, human adipose tissue was used to examine the effect of AICAR ex vivo. METHODS Six-week-old male C57BL/6J wild-type and Adipoq -/- mice were fed a standard-fat diet (10% fat) or an HFD (60% fat) for 12 weeks and given vehicle or AICAR (500 μg/g) three times/week from weeks 4-12. Diet-induced pathophysiology was examined in mice after 11 weeks by IPGTT and after 12 weeks by flow cytometry and western blotting. Human adipose tissue biopsies from obese (BMI 35-50 kg/m2) individuals were incubated with vehicle or AICAR (1 mmol/l) for 6 h at 37°C, after which inflammation was characterised by ELISA (TNF-α) and flow cytometry. RESULTS AICAR attenuated adipose inflammation in mice fed an HFD, promoting an M1-to-M2 macrophage phenotype switch, while reducing infiltration of CD8+ T cells. AICAR treatment of mice fed an HFD partially restored glucose tolerance and attenuated hepatic steatosis and kidney disease, as evidenced by reduced albuminuria (p < 0.05), urinary H2O2 (p < 0.05) and renal superoxide levels (p < 0.01) in both wild-type and Adipoq -/- mice. AICAR-mediated protection occurred independently of adiponectin, as similar protection was observed in wild-type and Adipoq -/- mice. In addition, AICAR promoted an M1-to-M2 macrophage phenotype switch and reduced TNF-α production in tissue explants from obese human patients. CONCLUSIONS/INTERPRETATION AICAR may promote metabolic health and protect against obesity-induced systemic diseases in an adiponectin-independent manner. Furthermore, AICAR reduced inflammation in human adipose tissue explants, suggesting by proof-of-principle that the drug may reduce obesity-induced complications in humans. TRIAL REGISTRATION ClinicalTrials.gov NCT02322073.
Collapse
Affiliation(s)
- Emma Börgeson
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, S-413 45, Gothenburg, Sweden.
- Centre for Renal Translational Medicine, Institute of Metabolomic Medicine, UC San Diego Health Sciences, San Diego VA HealthCare System, Stein Clinical Research Building, Room 406, mail code 0711, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Veteran's Affairs (VA), San Diego VA HealthCare System, Veterans Medical Research Foundation, San Diego, CA, USA.
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gulam H Syed
- Division of Infectious Diseases, School of Medicine, University of California, San Diego, CA, USA
| | - Manjula Darshi
- Centre for Renal Translational Medicine, Institute of Metabolomic Medicine, UC San Diego Health Sciences, San Diego VA HealthCare System, Stein Clinical Research Building, Room 406, mail code 0711, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Juan Lantero Rodriguez
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, S-413 45, Gothenburg, Sweden
| | - Christina Biörserud
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Ragnmark Ek
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Björklund
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Godson
- University College Dublin (UCD) Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Kumar Sharma
- Centre for Renal Translational Medicine, Institute of Metabolomic Medicine, UC San Diego Health Sciences, San Diego VA HealthCare System, Stein Clinical Research Building, Room 406, mail code 0711, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Veteran's Affairs (VA), San Diego VA HealthCare System, Veterans Medical Research Foundation, San Diego, CA, USA.
| |
Collapse
|