1
|
Paolini M, Fortaner-Uyà L, Lorenzi C, Spadini S, Maccario M, Zanardi R, Colombo C, Poletti S, Benedetti F. Association between NTRK2 Polymorphisms, Hippocampal Volumes and Treatment Resistance in Major Depressive Disorder. Genes (Basel) 2023; 14:2037. [PMID: 38002980 PMCID: PMC10671548 DOI: 10.3390/genes14112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the increasing availability of antidepressant drugs, a high rate of patients with major depression (MDD) does not respond to pharmacological treatments. Brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling is thought to influence antidepressant efficacy and hippocampal volumes, robust predictors of treatment resistance. We therefore hypothesized the possible role of BDNF and neurotrophic receptor tyrosine kinase 2 (NTRK2)-related polymorphisms in affecting both hippocampal volumes and treatment resistance in MDD. A total of 121 MDD inpatients underwent 3T structural MRI scanning and blood sampling to obtain genotype information. General linear models and binary logistic regressions were employed to test the effect of genetic variations related to BDNF and NTRK2 on bilateral hippocampal volumes and treatment resistance, respectively. Finally, the possible mediating role of hippocampal volumes on the relationship between genetic markers and treatment response was investigated. A significant association between one NTRK2 polymorphism with hippocampal volumes and antidepressant response was found, with significant indirect effects. Our results highlight a possible mechanistic explanation of antidepressant action, possibly contributing to the understanding of MDD pathophysiology.
Collapse
Affiliation(s)
- Marco Paolini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lidia Fortaner-Uyà
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Maccario
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Colombo
- Mood Disorders Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
2
|
Göteson A, Clements CC, Juréus A, Joas E, Holmén Larsson J, Karlsson R, Nordenskjöld A, Pålsson E, Landén M. Alterations in the Serum Proteome Following Electroconvulsive Therapy for a Major Depressive Episode: A Longitudinal Multicenter Study. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:884-892. [PMID: 37881534 PMCID: PMC10593865 DOI: 10.1016/j.bpsgos.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Electroconvulsive therapy (ECT) is the most effective treatment for severe depression, but the biological changes induced by ECT remain poorly understood. Methods This study investigated alterations in blood serum proteins in 309 patients receiving ECT for a major depressive episode. We analyzed 201 proteins in samples collected at 3 time points (T): just before the first ECT treatment session (T0), within 30 minutes after the first ECT session (T1), and just before the sixth ECT session (T2). Results Using statistical models to account for repeated sampling, we identified 152 and 70 significantly (<5% false discovery rate) altered proteins at T1 and T2, respectively. The most pronounced alterations at T1 were transiently increased levels of prolactin, myoglobin, and kallikrein-6. However, most proteins had decreased levels at T1, with the largest effects observed for pro-epidermal growth factor, proto-oncogene tyrosine-protein kinase Src, tumor necrosis factor ligand superfamily member 14, sulfotransferase 1A1, early activation antigen CD69, and CD40 ligand. The change of several acutely altered proteins correlated with electric current and pulse frequency in a dose-response-like manner. Over a 5-session course of ECT, some acutely altered levels were sustained while others increased, e.g., serine protease 8 and chitinase-3-like protein 1. None of the studied protein biomarkers were associated with clinical response to ECT. Conclusions We report experimental data on alterations in the circulating proteome triggered by ECT in a clinical setting. The findings implicate hormonal signaling, immune response, apoptotic processes, and more. None of the findings were associated with clinical response to ECT.
Collapse
Affiliation(s)
- Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Caitlin C. Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts
| | - Anders Juréus
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Joas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Holmén Larsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Wang Z, Zou Z, Xiao J, Min W, Nan LP, Yuan C, Yuan L, Yang C, Huang R, He Y. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with mental disorders: A systematic review and meta-analysis. Gen Hosp Psychiatry 2023; 83:86-92. [PMID: 37148598 DOI: 10.1016/j.genhosppsych.2023.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Multiple studies have indicated that electroconvulsive therapy (ECT) could increase brain-derived neurotrophic factor (BDNF) concentrations in patients with different mental disorders. The aim of this synthesis was to evaluate post-ECT BDNF concentrations in patients with various mental disorders. METHODS The Embase, PubMed and Web of Science databases were systematically searched for studies in English comparing BDNF concentrations before and after ECT through 11/2022. We extracted the pertinent information from the included studies and evaluated their quality. The standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to quantify BDNF concentration differences. RESULTS In total, 35 studies assessed BDNF concentrations in 868 and 859 patients pre and post-ECT treatment, respectively. Post-ECT-treatment BDNF concentrations were significantly higher than the pretreatment concentrations (Hedges'g = -0.50, 95% CI (-0.70, -0.30), heterogeneity I2 = 74%, p < 0.001). The analysis that combined both ECT responders and non-responders demonstrated a marked increase in total BDNF levels subsequent to ECT treatment (Hedges'g = -0.27, 95% CI (-0.42, -0.11), heterogeneity I2 = 40%, p = 0.0007). CONCLUSION Irrespective of the effectiveness of ECT, Our study shows that peripheral BDNF concentrations increase significantly after the entire course of ECT, which may enhance our comprehension of the interplay between ECT treatment and BDNF levels. However, BDNF concentrations were not associated with the effectiveness of ECT, and abnormal concentrations of BDNF may be linked to the pathophysiological process of mental illness, necessitating more future research.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Wenjiao Min
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Li-Ping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cui Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lu Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chenghui Yang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying He
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
4
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Ryan KM, Smyth P, Blackshields G, Kranaster L, Sartorius A, Sheils O, McLoughlin DM. Electroconvulsive Stimulation in Rats Induces Alterations in the Hippocampal miRNome: Translational Implications for Depression. Mol Neurobiol 2023; 60:1150-1163. [PMID: 36414911 DOI: 10.1007/s12035-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) may contribute to the development of depression and its treatment. Here, we used the hypothesis-neutral approach of next-generation sequencing (NGS) to gain comprehensive understanding of the effects of a course of electroconvulsive stimulation (ECS), the animal model equivalent of electroconvulsive therapy (ECT), on rat hippocampal miRNAs. Significant differential expression (p < 0.001) of six hippocampal miRNAs was noted following NGS, after correcting for multiple comparisons. Three of these miRNAs were upregulated (miR-132, miR-212, miR-331) and three downregulated (miR-204, miR-483, miR-301a). qRT-PCR confirmed significant changes in four of the six miRNAs (miR-132, miR-212, miR-204, miR-483). miR-483 was also significantly reduced in frontal cortex, though no other significant alterations were noted in frontal cortex, cerebellum, or whole blood. Assessing the translatability of the results, miR-132 and miR-483 were significantly reduced in whole blood samples from medicated patients with depression (n = 50) compared to healthy controls (n = 45), though ECT had no impact on miRNA levels. Notably, pre-ECT miR-204 levels moderately positively correlated with depression severity at baseline and moderately negatively correlated with mood score reduction post-ECT. miRNAs were also examined in cerebrospinal fluid and serum from a separate cohort of patients (n = 8) treated with ECT; no significant changes were noted post-treatment. However, there was a large positive correlation between changes in miR-212 and mood score post-ECT in serum. Though replication studies using larger sample sizes are required, alterations in miRNA expression may be informative about the mechanism of action of ECS/ECT and in turn might give insight into the neurobiology of depression.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland. .,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland.
| | - Paul Smyth
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Laura Kranaster
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| |
Collapse
|
6
|
Yoshimura R, Okamoto N, Chibaatar E, Natsuyama T, Ikenouchi A. The Serum Brain-Derived Neurotrophic Factor Increases in Serotonin Reuptake Inhibitor Responders Patients with First-Episode, Drug-Naïve Major Depression. Biomedicines 2023; 11:biomedicines11020584. [PMID: 36831119 PMCID: PMC9953440 DOI: 10.3390/biomedicines11020584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor synthesized in the cell bodies of neurons and glia, which affects neuronal maturation, the survival of nervous system, and synaptic plasticity. BDNF play an important role in the pathophysiology of major depression (MD). The serum BDNF levels changed over time, or with the improvement in depressive symptoms. However, the change of serum BDNF during pharmacotherapy remains obscure in MDD. In particular, the changes in serum BDNF associated with pharmacotherapy have not yet been fully elucidated. The present study aimed to compare the changes in serum BDNF concentrations in first-episode, drug-naive patients with MD treated with antidepressants between treatment-response and treatment-nonresponse groups. The study included 35 inpatients and outpatients composed of 15 males and 20 females aged 36.7 ± 6.8 years at the Department of Psychiatry of our University Hospital. All patients met the DSM-5 diagnostic criteria for MD. The antidepressants administered included paroxetine, duloxetine, and escitalopram. Severity of depressive state was assessed using the 17-item HAMD before and 8 weeks after drug administration. Responders were defined as those whose total HAMD scores at 8 weeks had decreased by 50% or more compared to those before drug administration, while non-responders were those whose total HAMD scores had decreased by less than 50%. Here we showed that serum BDNF levels were not significantly different at any point between the two groups. The responder group, but not the non-responder group, showed statistically significant changes in serum BDNF 0 and serum BDNF 8. The results suggest that the changes of serum BDNF might differ between the two groups. The measurement of serum BDNF has the potential to be a useful predictor of pharmacotherapy in patients with first-episode, drug-naïve MD.
Collapse
|
7
|
Pelosof R, Santos LAD, Farhat LC, Gattaz WF, Talib L, Brunoni AR. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: An updated systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:24-33. [PMID: 35332840 DOI: 10.1080/15622975.2022.2058083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Studies have suggested Brain-Derived Neurotrophic Factors (BDNF) increase after electroconvulsive therapy (ECT) although they were methodologically limited and enrolled small sample sizes. We aimed at updating a systematic review and meta-analysis to explore BDNF changes after ECT for the treatment of depression. METHODS PubMed, PsycInfo, Embase and Global health were searched (March, 2021). Clinical trials that measured BDNF in the blood before and after ECT in adults (≥ 18 years old) with depression (major depressive disorder or bipolar disorder) were eligible. Data were pooled through random-effects meta-analyses. RESULTS Twenty-eight studies involving 778 participants were included. Meta-analysis showed a significant increase in BDNF levels after ECT (Hedges' g = 0.28; 95% CI: 0.10, 0.46) while there was evidence of significant heterogeneity (I2 = 67.64%) but not publication bias/small-study effect. Subgroup analyses and meta-regressions were underpowered to detect significant differences. Meta-analysis of depression severity scores demonstrated a considerable larger treatment effect in reducing depressive symptoms after ECT (Hedge's g = -3.72 95% CI: -4.23, -3.21). CONCLUSION This updated review showed that BDNF blood levels increased after ECT treatment. However, there was still evidence of substantial heterogeneity and there were limited sample sizes to investigate factors driving the variability of effects across studies. Importantly, the increase in BDNF levels was substantially smaller than the observed in depressive symptomatology, which could be indicative that the former was independent than the latter. Additional studies with larger sample sizes are currently required.
Collapse
Affiliation(s)
- Rebeca Pelosof
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo A Dos Santos
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Leda Talib
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André R Brunoni
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Interdisciplinary Center for Applied Neuromodulation University Hospital, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Shahin O, Gohar SM, Ibrahim W, El-Makawi SM, Fakher W, Taher DB, Abdel Samie M, Khalil MA, Saleh AA. Brain-Derived neurotrophic factor (BDNF) plasma level increases in patients with resistant schizophrenia treated with electroconvulsive therapy (ECT). Int J Psychiatry Clin Pract 2022; 26:370-375. [PMID: 35192426 DOI: 10.1080/13651501.2022.2035770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The study aimed to assess the effect of Electroconvulsive Therapy (ECT) on plasma BDNF levels in patients with resistant schizophrenia. METHODS It was a cohort study that included 60 patients with resistant schizophrenia fulfilling the DSM-5 criteria of schizophrenia and APA criteria of resistant schizophrenia. They were divided into two groups, followed over 4 weeks, and compared to their baseline assessment. Group (A) included 45 patients who received 4-10 sessions of ECT while Group (B) included 15 patients who received the usual treatment with antipsychotics without ECT. The assessment included the severity of psychotic symptoms assessed by the Positive and Negative Symptom Scale (PANSS) in addition to plasma BDNF level. RESULTS Patients in Group (A) had an increased level of BDNF after treatment with a statistically significant difference in comparison to their baseline BDNF level (P = 0.027). Meanwhile, patients in group (B) showed a non-significant increase in BDNF. Patients in both groups improved significantly in all PANSS subscales after treatment. CONCLUSIONS It was concluded that plasma BDNF levels in patients with resistant schizophrenia increase after electroconvulsive therapy in association with clinical improvement.Key pointsBDNF increases after ECT treatment of resistant schizophrenia.BDNF is not correlated with the severity of psychotic symptomsPatients treated with ECT showed a better response.
Collapse
Affiliation(s)
- Ola Shahin
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Sherif M Gohar
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Walaa Ibrahim
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Shirin M El-Makawi
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Walaa Fakher
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Dina Badie Taher
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Mai Abdel Samie
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Mohamed A Khalil
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| | - Alia A Saleh
- Faculty of Medicine, Cairo University, El Saraya street, El Manyal, Cairo, Egypt
| |
Collapse
|