1
|
Schroeter CA, Gorlova A, Sicker M, Umriukhin A, Burova A, Shulgin B, Morozov S, Costa-Nunes JP, Strekalova T. Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility. Biomolecules 2025; 15:67. [PMID: 39858460 PMCID: PMC11764023 DOI: 10.3390/biom15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy.
Collapse
Affiliation(s)
- Careen A. Schroeter
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Anna Gorlova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit, Preventive and Environmental Medicine, Kastanienhof Clinic, Statthalterhofweg, 50858 Cologne-Junkersdorf, Germany
| | - Aleksei Umriukhin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
| | - Alisa Burova
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Boris Shulgin
- Department of Normal Physiology and Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia (B.S.)
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, Kyzylorda 120014, Kazakhstan
| | - Sergey Morozov
- FGBNU, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (A.G.); (A.B.)
| | - Joao P. Costa-Nunes
- Faculdade de Medicina, Universidade de Lisboa, Campo Grande, 1649-028 Lisboa, Portugal;
| | - Tatyana Strekalova
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
2
|
Singh P, Srivastava A, Guin D, Thakran S, Yadav J, Chandna P, Sood M, Chadda RK, Kukreti R. Genetic Landscape of Major Depressive Disorder: Assessment of Potential Diagnostic and Antidepressant Response Markers. Int J Neuropsychopharmacol 2023; 26:692-738. [PMID: 36655406 PMCID: PMC10586057 DOI: 10.1093/ijnp/pyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation. METHODS We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values. RESULTS A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response. CONCLUSIONS The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Puneet Chandna
- Indian Society of Colposcopy and Cervical Pathology (ISCCP), Safdarjung Hospital, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Hernandez-Mixteco M, Bernal-Morales B, Valenzuela OL, Rodríguez-Landa JF, Cerna-Cortes JF, García-Montalvo EA. TPH2-703 G/T polymorphism is associated with stress, depression, and psychosocial symptoms in mentally healthy Mexicans. Brain Res 2023; 1817:148479. [PMID: 37423455 DOI: 10.1016/j.brainres.2023.148479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Tryptophan hydroxylase (TPH) catalyzes the rate-limiting step of serotonin synthesis. TPH2 is the brain-specific isoform of this enzyme, and genetic variations in the TPH2 gene have been shown to impact its transcription and enzymatic activity and are associated with mood disorders. In this study we focused on the rs4570625 (-703G/T) single nucleotide polymorphism of TPH2 gene. By using conventional polymerase chain reaction (PCR), we examined the effect of this polymorphism on stress, anxiety, and depression symptoms as well as quality of life, evaluated based on the Holmes-Rahe Inventory, the Beck Anxiety Inventory, the Beck Depression Inventory, and the World Health Organization Quality of Life - Short Version, respectively. We found that individuals with the homozygous recessive T/T genotype had lower stress and depression scores. In addition, the quality of life in the psychological health domain was better in males with the T/T genotype. These results suggest that T/T genotype could decrease the susceptibility to developing stress and depression in the Mexican population without a diagnosis for an emotional disorder.
Collapse
Affiliation(s)
- Margarita Hernandez-Mixteco
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | - Blandina Bernal-Morales
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | - Jorge Francisco Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | |
Collapse
|
4
|
Zhou X, Yi W, Zhi Y, Yu J, Lu D, Luo Z, Yuan L, Chen L, Xu Z, Xu D. Stress-Activated Protein Kinase JNK Modulates Depression-like Behaviors in Mice. Mol Neurobiol 2023; 60:2367-2378. [PMID: 36650421 DOI: 10.1007/s12035-023-03209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Xiaokun Zhou
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Wenxiang Yi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Jurui Yu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Danping Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhousong Luo
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410028, China
| | - Liyu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
5
|
Serotonin-Related Functional Genetic Variants Affect the Occurrence of Psychiatric and Motor Adverse Events of Dopaminergic Treatment in Parkinson’s Disease: A Retrospective Cohort Study. J Pers Med 2022; 12:jpm12020266. [PMID: 35207756 PMCID: PMC8875505 DOI: 10.3390/jpm12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
The serotonergic system is important in Parkinson’s disease (PD) pathogenesis as it can take over dopamine production after a large portion of dopaminergic neurons is lost through neurodegeneration. The aim of this study was to evaluate the effect of genetic variability of serotonergic genes on the occurrence of motor complications and psychiatric adverse events (AE) due to dopaminergic treatment. We enrolled 231 patients and their clinical data were collected. Genotyping was performed for eight genetic variants. Logistic regression was used for analysis. Carriers of the HTR1A rs6295 GC genotype (OR = 2.58; 95% CI = 1.15–5.78; p = 0.021), TPH2 rs4290270 AA genotype (OR = 2.78; 95% CI = 1.08–7.03; p = 0.034), and at least one TPH2 rs4570625 T allele (OR = 1.86; 95% CI = 1.00–3.44; p = 0.047) had increased risk for visual hallucinations (VH). Additionally, carriers of at least one SLC6A4 5-HTTPLR rs25531 S (OR = 0.52; 95% CI = 0.28–0.96; p = 0.037) or at least one LG allele (OR = 0.37; 95% CI = 0.14–0.97; p = 0.044) had a decreased chance for VH. Constructed haplotypes of the TPH2 showed increased risk for VH (OR = 1.94; 95% CI = 1.06–3.55; p = 0.032) and impulse control disorders (OR = 5.20; 95% CI = 1.86–14.50; p = 0.002). Finally, individual gene–gene interactions showed decreased odds for the development of motor AE. Our findings suggest that the serotonergic pathway may play an important role in the development of AE resulting from dopaminergic treatment.
Collapse
|
6
|
Su YA, Bousman CA, Liu Q, Lv XZ, Li JT, Lin JY, Yu X, Tian L, Si TM. Anxiety symptom remission is associated with genetic variation of PTPRZ1 among patients with major depressive disorder treated with escitalopram. Pharmacogenet Genomics 2021; 31:172-176. [PMID: 34081644 DOI: 10.1097/fpc.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Genome-wide analyses of antidepressant response have suggested that genes initially associated with risk for schizophrenia may also serve as promising candidates for selective serotonin reuptake inhibitor (SSRI) efficacy. Protein tyrosine phosphatase, receptor-type, zeta-1 (PTPRZ1) has previously been shown to be associated with schizophrenia, but it has not been investigated as a predictor of antidepressant efficacy. The main objective of the study was to assess whether SSRI-mediated depressive and anxiety symptom remission in Chinese patients with major depressive disorder (MDD) are associated with specific PTPRZ1 variants. METHODS Two independent cohorts were investigated, the first sample (N = 344) received an SSRI (i.e. fluoxetine, sertraline, citalopram, escitalopram, fluvoxamine, or paroxetine) for 8 weeks. The second sample (N = 160) only received escitalopram for 8 weeks. Hamilton Depression and Hamilton Anxiety Rating Scale scores at 8-weeks post-baseline in both cohorts were used to determine remission status. Five PTPRZ1 variants (rs12154537, rs6466810, rs6466808, rs6955395, and rs1918031) were genotyped in both cohorts. RESULTS Anxiety symptom remission was robustly associated with PTPRZ1 rs12154537 (P = 0.004) and the G-G-G-G haplotype (rs12154537-rs6466810-rs6466808-rs6955395; P = 0.005) in cohort 2 but not cohort 1 (mixed SSRI use). Associations with depressive symptom remission did not survive correction for multiple testing. CONCLUSIONS These findings suggest that PTPRZ1 variants may serve as a marker of escitalopram-mediated anxiety symptom remission in MDD.
Collapse
Affiliation(s)
- Yun-Ai Su
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Qi Liu
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Zhen Lv
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Yu Lin
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xin Yu
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tian-Mei Si
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
7
|
Ding L, Maloney SK, Wang M, Rodger J, Chen L, Blache D. Association between temperament related traits and single nucleotide polymorphisms in the serotonin and oxytocin systems in Merino sheep. GENES BRAIN AND BEHAVIOR 2020; 20:e12714. [PMID: 33161622 DOI: 10.1111/gbb.12714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/26/2023]
Abstract
Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, which has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the nonselected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype.
Collapse
Affiliation(s)
- Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lianmin Chen
- Department of Genetics and Pediatrics, University of Groningen, Groningen, Netherlands
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Wan YS, Zhai XJ, Tan HA, Ai YS, Zhao LB. Associations between the 1438A/G, 102T/C, and rs7997012G/A polymorphisms of HTR2A and the safety and efficacy of antidepressants in depression: a meta-analysis. THE PHARMACOGENOMICS JOURNAL 2020; 21:200-215. [PMID: 33097827 DOI: 10.1038/s41397-020-00197-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022]
Abstract
The correlations between hydroxytryptamine receptor 2A (HTR2A) gene polymorphisms (1438A/G, 102T/C, and rs7997012G/A) and the safety and efficacy of antidepressants in depression patients were constantly reported, but conclusions are debatable. This meta-analysis ascertained forty-two studies on the efficacy (including response and remission) and side-effect issued before February 2020. Pooled analyses indicated significant associations of 1438A/G polymorphism (16 studies, 1931 subjects) and higher response within dominant model (OR: 1.40, 95% CI: 1.12-1.76); rs7997012G/A polymorphism (nine studies, 1434 subjects) and higher remission in overall models (dominant model: OR: 1.30, 95% CI: 1.01-1.66; recessive model: OR: 2.20, 95% CI: 1.53-3.16; homozygote model: OR: 2.73, 95% CI: 1.78-4.17); 102T/C polymorphism (eight studies, 804 subjects) and reduced risk of side-effect within recessive (OR: 0.57, 95% CI: 0.4-0.83) and homozygote models (OR: 0.54, 95% CI: 0.29-0.99). For depression patients, genotyping of HTR2A polymorphisms is a promising tool for estimating the outcome and side-effect of antidepressants.
Collapse
Affiliation(s)
- Yuan-Sheng Wan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Jia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ai Tan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Sheng Ai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li-Bo Zhao
- Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Duan L, Gao Y, Shao X, Tian C, Fu C, Zhu G. Research on the Development of Theme Trends and Changes of Knowledge Structures of Drug Therapy Studies on Major Depressive Disorder Since the 21 st Century: A Bibliometric Analysis. Front Psychiatry 2020; 11:647. [PMID: 32754061 PMCID: PMC7367417 DOI: 10.3389/fpsyt.2020.00647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Antidepressant treatment is one of the most effective ways of relieving or curing depressive symptoms in patients with major depressive disorder (MDD). Although many studies have explored the efficacy, tolerability, adverse reactions, and functional mechanism of the disease, there has been no systematic evaluation of the relevant results in this field. AIM This paper aims to analyze the theme trends and knowledge structure of drug therapy studies on MDD since the 21st century by employing bibliometric analysis. METHODS Literature published in PubMed and related to drug therapy studies on MDD were retrieved between 2001 and 2018 in 6-year increments. After extracting major Medical Subject Headings (MeSH) terms/MeSH subheadings, bi-clustering analysis, social network analysis, and strategic diagrams were employed to complete bibliometric analysis. RESULTS Overall, 1,577, 2,680, 2,848 relevant research articles were retrieved for the periods during 2001-2006, 2007-2012, and 2013-2018, respectively. In line with strategic diagrams, the main undeveloped and peripheral theme clusters during 2001-2006 were functional mechanisms of antidepressants in pathophysiology, neuroendocrinology and neural biochemistry. These themes were replaced during 2007-2012 by clinical efficacy and influencing factors of antidepressants with or without psychotherapy, mechanisms of adverse reactions of antidepressants, and predictive studies of clinical therapeutic effects of antidepressants based on brain imaging. During 2013-2018 application and evaluation of new antidepressant agents, early identification and prevention of suicide of patients with MDD, as well as genetic- or bio-markers affecting the response and efficacy of antidepressants were the primary themes. Based on social network analyses, emerging hotspots, such as antidepressive agents, second-generation/adverse effects, depressive disorder, major/metabolism, psychotherapy/methods, and brain/drug effects could be identified during 2007-2012 and 2013-2018. CONCLUSIONS These undeveloped theme clusters and emerging hotspots can be helpful for researchers to clarify the current status of their respective fields and future trends, and to generate novel ideas that may launch new research directions.
Collapse
Affiliation(s)
- Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,School of Nursing, Chengde Medical University, Chengde, China
| | - Yunfeng Gao
- Department of Hand and Foot Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - ChunSheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Wigner P, Czarny P, Synowiec E, Bijak M, Białek K, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Association between single nucleotide polymorphisms of TPH1 and TPH2 genes, and depressive disorders. J Cell Mol Med 2018; 22:1778-1791. [PMID: 29314569 PMCID: PMC5824396 DOI: 10.1111/jcmm.13459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tryptophan catabolites pathway disorders are observed in patients with depression. Moreover, single nucleotide polymorphisms of tryptophan hydroxylase genes may modulate the risk of depression occurrence. The objective of our study was to confirm the association between the presence of polymorphic variants of TPH1 and TPH2 genes, and the development of depressive disorders. Six polymorphisms were selected: c.804-7C>A (rs10488682), c.-1668T>A (rs623580), c.803+221C>A (rs1800532), c.-173A>T (rs1799913)-TPH1, c.-1449C>A (rs7963803), and c.-844G>T (rs4570625)-TPH2. A total of 510 DNA samples (230 controls and 280 patients) were genotyped using TaqMan probes. Among the studied polymoorphisms, the G/G genotype and G allele of c.804-7C>A-TPH1, the T/T homozygote of c.803+221C>A-TPH1, the A/A genotype and A allele of c.1668T>A-TPH1, the G/G homozygote and G allele of c.-844G>T-TPH2, and the C/A heterozygote and A allele of c.-1449C>A-TPH2 were associated with the occurrence of depression. However, the T/T homozygote of c.-1668T>A-TPH1, the G/T heterozygote and T allele of c.-844G>T-TPH2, and the C/C homozygote and C allele of c.-1449C>A-TPH2 decreased the risk of development of depressive disorders. Each of the studied polymorphisms modulated the risk of depression for selected genotypes and alleles. These results support the hypothesis regarding the involvement of the pathway in the pathogenesis of depression.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical GeneticsDepartment of Molecular GeneticsFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Piotr Czarny
- Department of Medical BiochemistryMedical University of LodzLodzPoland
| | - Ewelina Synowiec
- Laboratory of Medical GeneticsDepartment of Molecular GeneticsFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Michał Bijak
- Department of General BiochemistryFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | - Katarzyna Białek
- Laboratory of Medical GeneticsDepartment of Molecular GeneticsFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| | | | - Piotr Galecki
- Department of Adult PsychiatryMedical University of LodzLodzPoland
| | - Janusz Szemraj
- Department of Medical BiochemistryMedical University of LodzLodzPoland
| | - Tomasz Sliwinski
- Laboratory of Medical GeneticsDepartment of Molecular GeneticsFaculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
| |
Collapse
|
11
|
Association of regulatory TPH2 polymorphisms with higher reduction in depressive symptoms in children and adolescents treated with fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:236-240. [PMID: 28456685 DOI: 10.1016/j.pnpbp.2017.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022]
Abstract
Genetic variability related to the brain serotonergic system has a significant impact on both the susceptibility to psychiatric disorders, such as major depressive disorder (MDD), and the response to antidepressant drugs, such as fluoxetine. TPH2 is one of the most important serotonergic candidate genes in selective serotonin reuptake inhibitors (SSRIs) pharmacogenetic studies. The aim of the present study was to evaluate the influence of regulatory polymorphisms that are specifically located in human TPH2 transcription factor binding sites (TFBSs), and therefore could be functional by altering gene expression, on clinical improvement in children and adolescents treated with fluoxetine. The selection of SNPs was also based on their linkage disequilibrium with TPH2 rs4570625, a genetic variant with questionable functionality, which was previously associated with clinical response in our pediatric population. A total of 83 children and adolescents were clinically evaluated 12weeks after initiating antidepressant treatment with fluoxetine for the first time. Clinical improvement was assessed by reductions in depressive symptoms measured using the Children's Depression Inventory (CDI) scale. The polymorphisms rs11179002, rs60032326 and rs34517220 were, for the first time in the literature, significantly associated with higher clinical improvement. The strongest association was found for rs34517220. In particular, minor allele homozygotes showed higher score reductions on the CDI scale compared with the major allele carriers. Interestingly, this polymorphism is located in a human TPH2 TFBS for two relevant transcription factors in the serotoninergic neurons, Foxa1 and Foxa2, which together with the high level of significance found for this SNP, could indicate that rs34517220 is in fact the crucial functional genetic variant related to the fluoxetine response. These results provide new evidence for the role of regulatory genetic variants that could modulate human TPH2 expression in the SSRI antidepressant response.
Collapse
|