1
|
Li X, Delerue T, Schöttker B, Holleczek B, Grill E, Peters A, Waldenberger M, Thorand B, Brenner H. Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults. Nat Commun 2022; 13:5269. [PMID: 36071044 PMCID: PMC9450828 DOI: 10.1038/s41467-022-32893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
DNA methylation (DNAm) patterns in peripheral blood have been shown to be associated with aging related health outcomes. We perform an epigenome-wide screening to identify CpGs related to frailty, defined by a frailty index (FI), in a large population-based cohort of older adults from Germany, the ESTHER study. Sixty-five CpGs are identified as frailty related methylation loci. Using LASSO regression, 20 CpGs are selected to derive a DNAm based algorithm for predicting frailty, the epigenetic frailty risk score (eFRS). The eFRS exhibits strong associations with frailty at baseline and after up to five-years of follow-up independently of established frailty risk factors. These associations are confirmed in another independent population-based cohort study, the KORA-Age study, conducted in older adults. In conclusion, we identify 65 CpGs as frailty-related loci, of which 20 CpGs are used to calculate the eFRS with predictive performance for frailty over long-term follow-up.
Collapse
Affiliation(s)
- Xiangwei Li
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Krebsregister Saarland, Neugeländstraße 9, 66117, Saarbrücken, Germany
| | - Eva Grill
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Vertigo and Balance Disorders, Klinikum der Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany.,Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Barbara Thorand
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. .,German Cancer Consortium, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
3
|
Carvajal-Rodríguez A. HacDivSel: Two new methods (haplotype-based and outlier-based) for the detection of divergent selection in pairs of populations. PLoS One 2017; 12:e0175944. [PMID: 28423003 PMCID: PMC5397020 DOI: 10.1371/journal.pone.0175944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/03/2017] [Indexed: 01/10/2023] Open
Abstract
The detection of genomic regions involved in local adaptation is an important topic in current population genetics. There are several detection strategies available depending on the kind of genetic and demographic information at hand. A common drawback is the high risk of false positives. In this study we introduce two complementary methods for the detection of divergent selection from populations connected by migration. Both methods have been developed with the aim of being robust to false positives. The first method combines haplotype information with inter-population differentiation (FST). Evidence of divergent selection is concluded only when both the haplotype pattern and the FST value support it. The second method is developed for independently segregating markers i.e. there is no haplotype information. In this case, the power to detect selection is attained by developing a new outlier test based on detecting a bimodal distribution. The test computes the FST outliers and then assumes that those of interest would have a different mode. We demonstrate the utility of the two methods through simulations and the analysis of real data. The simulation results showed power ranging from 60-95% in several of the scenarios whilst the false positive rate was controlled below the nominal level. The analysis of real samples consisted of phased data from the HapMap project and unphased data from intertidal marine snail ecotypes. The results illustrate that the proposed methods could be useful for detecting locally adapted polymorphisms. The software HacDivSel implements the methods explained in this manuscript.
Collapse
|
4
|
microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer 2016; 116:66-76. [PMID: 27875524 PMCID: PMC5220146 DOI: 10.1038/bjc.2016.379] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background: microRNAs (miRNAs) have regulatory roles in various cellular processes, including apoptosis. Recently, X-linked inhibitor of apoptosis protein (XIAP) has been reported to be dysregulated in epithelial ovarian cancer (EOC). However, the mechanism underlying this dysregulation is largely unknown. Methods: Using bioinformatics and a literature analysis, a panel of miRNAs dysregulated in EOC was chosen for further experimental confirmation from hundreds of miRNAs that were predicted to interact with the XIAP 3′UTR. A dual-luciferase reporter assay was employed to detect the interaction by cellular co-transfection of an miRNA expression vector and a reporter vector with the XIAP 3′UTR fused to a Renilla luciferase reporter. DAPI and TUNEL approaches were used to further determine the effects of an miR-137 mimic and inhibitor on cisplatin-induced apoptosis in ovarian cancer cells. Results: We identified eight miRNAs by screening a panel of dysregulated miRNAs that may target the XIAP 3′UTR. The strongest inhibitory miRNA, miR-137, suppressed the activity of a luciferase reporter gene fused with the XIAP 3′UTR and decreased the levels of XIAP protein in SKOV3 ovarian cancer cells. Furthermore, forced expression of miR-137 increased cisplatin-induced apoptosis, and the depressed expression of miR-137 decreased cisplatin-induced apoptosis in SKOV3 and primary EOC cells. Consistently, the disruption of miR-137 via CRISPR/Cas9 inhibited apoptosis and upregulated XIAP in A2780 cells. Furthermore, the effect of miR-137 on apoptosis could be rescued by XIAP in SKOV3 cells. In addition, miR-137 expression is inversely correlated with the level of XIAP protein in both ovarian cancer tissues and cell lines. Conclusions: Our data suggest that multiple miRNAs can regulate XIAP via its 3′UTR. miR-137 can sensitise ovarian cancer cells to cisplatin-induced apoptosis, providing new insight into overcoming drug resistance in ovarian cancer.
Collapse
|
5
|
Individual risk alleles of susceptibility to schizophrenia are associated with poor clinical and social outcomes. J Hum Genet 2015; 61:329-34. [PMID: 26674612 DOI: 10.1038/jhg.2015.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 11/08/2022]
Abstract
Many patients with schizophrenia have poor clinical and social outcomes. Some risk alleles closely related to the onset of schizophrenia have been reported to be associated with their clinical phenotypes, but the direct relationship between genetic vulnerability to schizophrenia and clinical/social outcomes of schizophrenia, as evaluated by both practical clinical scales and 'real-world' function, has not been investigated. We evaluated the clinical and social outcomes of 455 Japanese patients with schizophrenia by severity of illness according to the Clinical Global Impression-Severity Scale (CGI-S) and social outcomes by social adjustment/maladjustment at 5 years after the first visit. We examined whether 46 single nucleotide polymorphisms (SNPs) selected from a Japanese genome-wide association study of susceptibility to schizophrenia were associated with clinical and social outcomes. We also investigated the polygenic risk scores of 46 SNPs. Allele-wise association analysis detected three SNPs, including rs2623659 in the CUB and Sushi multiple domains-1 (CSMD1) gene, associated with severity of illness at end point. The severity of illness at end point was associated with treatment response, but not with the severity of illness at baseline. Three SNPs, including rs2294424 in the C6orf105 gene, were associated with social outcomes. Point estimates of odds ratios showed positive relationships between polygenic risk scores and clinical/social outcomes; however, the results were not statistically significant. Because these results are exploratory, we need to replicate them with a larger sample in a future study.
Collapse
|
6
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|