1
|
Uthanumallian K, Del Cortona A, Coelho SM, De Clerck O, Duchene S, Verbruggen H. Genome-wide patterns of selection-drift variation strongly associate with organismal traits across the green plant lineage. Genome Res 2024; 34:1130-1139. [PMID: 39209552 PMCID: PMC11444171 DOI: 10.1101/gr.279002.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
There are many gaps in our knowledge of how life cycle variation and organismal body architecture associate with molecular evolution. Using the diverse range of green algal body architectures and life cycle types as a test case, we hypothesize that increases in cytomorphological complexity are likely to be associated with a decrease in the effective population size, because larger-bodied organisms typically have smaller populations, resulting in increased drift. For life cycles, we expect haploid-dominant lineages to evolve under stronger selection intensity relative to diploid-dominant life cycles owing to masking of deleterious alleles in heterozygotes. We use a genome-scale data set spanning the phylogenetic diversity of green algae and phylogenetic comparative approaches to measure the relative selection intensity across different trait categories. We show stronger signatures of drift in lineages with more complex body architectures compared with unicellular lineages, which we consider to be a consequence of smaller effective population sizes of the more complex algae. Significantly higher rates of synonymous as well as nonsynonymous substitutions relative to other algal body architectures highlight that siphonous and siphonocladous body architectures, characteristic of many green seaweeds, form an interesting test case to study the potential impacts of genome redundancy on molecular evolution. Contrary to expectations, we show that levels of selection efficacy do not show a strong association with life cycle types in green algae. Taken together, our results underline the prominent impact of body architecture on the molecular evolution of green algal genomes.
Collapse
Affiliation(s)
- Kavitha Uthanumallian
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville VIC 3010, Australia;
| | - Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Sebastian Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville VIC 3010, Australia
- Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | - Heroen Verbruggen
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville VIC 3010, Australia;
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
2
|
Braasch J, Barker BS, Dlugosch KM. Expansion history and environmental suitability shape effective population size in a plant invasion. Mol Ecol 2019; 28:2546-2558. [PMID: 30993767 DOI: 10.1111/mec.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne ) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome-wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona.,Integrated Plant Protection Center and Department of Horticulture, Oregon State University, Corvallis, Oregon
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
3
|
Jueterbock A, Coyer JA, Olsen JL, Hoarau G. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae). BMC Evol Biol 2018; 18:94. [PMID: 29907080 PMCID: PMC6002991 DOI: 10.1186/s12862-018-1213-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). RESULTS Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. CONCLUSION Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.
Collapse
Affiliation(s)
| | - James A Coyer
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Jeanine L Olsen
- Ecological Genetics-Genomics Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| |
Collapse
|
4
|
Watts PC, Lundholm N, Ribeiro S, Ellegaard M. A century-long genetic record reveals that protist effective population sizes are comparable to those of macroscopic species. Biol Lett 2013; 9:20130849. [PMID: 24284562 PMCID: PMC3871374 DOI: 10.1098/rsbl.2013.0849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023] Open
Abstract
Effective population size (Ne) determines the rate of genetic drift and the relative influence of selection over random genetic changes. While free-living protist populations characteristically consist of huge numbers of cells (N), the absence of any estimates of contemporary Ne raises the question whether protist effective population sizes are comparably large. Using microsatellite genotype data of strains derived from revived cysts of the marine dinoflagellate Pentapharsodinium dalei from sections of a sediment record that spanned some 100 years, we present the first estimates of contemporary Ne for a local population in a free-living protist. The estimates of Ne are relatively small, of the order of a few 100 individuals, and thus are similar in magnitude to values of Ne reported for multicellular animals: the implications are that Ne of P. dalei is of many orders of magnitude lower than the number of cells present (Ne/N ∼ 10(-12)) and that stochastic genetic processes may be more prevalent in protist populations than previously anticipated.
Collapse
Affiliation(s)
- Phillip C. Watts
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FIN-40014, Jyväskylä 40014, Finland
| | - Nina Lundholm
- The Natural History Museum of Denmark, Sølvgade 83S, DK-1307 Copenhagen, Denmark
| | - Sofia Ribeiro
- Department of Marine Geology and Glaciology, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Marianne Ellegaard
- Department of Biology, University of Copenhagen, Øster Farimagsgade 2D, DK-1353 Copenhagen, Denmark
| |
Collapse
|
5
|
Provan J, Glendinning K, Kelly R, Maggs CA. Levels and patterns of population genetic diversity in the red seaweedChondrus crispus(Florideophyceae): a direct comparison of single nucleotide polymorphisms and microsatellites. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02010.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jim Provan
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Keith Glendinning
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Ruth Kelly
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Christine A. Maggs
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| |
Collapse
|
6
|
Frankham R. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity (Edinb) 2012; 108:167-78. [PMID: 21878983 PMCID: PMC3282390 DOI: 10.1038/hdy.2011.66] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.
Collapse
Affiliation(s)
- R Frankham
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Shi MM, Michalski SG, Chen XY, Durka W. Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS One 2011; 6:e21302. [PMID: 21701584 PMCID: PMC3118804 DOI: 10.1371/journal.pone.0021302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022] Open
Abstract
Background The distribution of genetic diversity among plant populations growing along elevational gradients can be affected by neutral as well as selective processes. Molecular markers used to study these patterns usually target neutral processes only, but may also be affected by selection. In this study, the effects of elevation and successional stage on genetic diversity of a dominant tree species were investigated controlling for neutrality of the microsatellite loci used. Methodology/Principal Findings Diversity and differentiation among 24 populations of Castanopsis eyrei from different elevations (251–920 m) and successional stages were analysed by eight microsatellite loci. We found that one of the loci (Ccu97H18) strongly deviated from a neutral model of differentiation among populations due to either divergent selection or hitchhiking with an unknown selected locus. The analysis showed that C. eyrei populations had a high level of genetic diversity within populations (AR = 7.6, HE = 0.82). Genetic variation increased with elevation for both the putatively selected locus Ccu97H18 and the neutral loci. At locus Ccu97H18 one allele was dominant at low elevations, which was replaced at higher elevations by an increasing number of other alleles. The level of genetic differentiation at neutral loci was similar to that of other Fagaceae species (FST = 0.032, = 0.15). Population differentiation followed a model of isolation by distance but additionally, strongly significant isolation by elevation was found, both for neutral loci and the putatively selected locus. Conclusions/Significance The results indicate higher gene flow among similar elevational levels than across different elevational levels and suggest a selective influence of elevation on the distribution of genetic diversity in C. eyrei. The study underlines the importance to check the selective neutrality of marker loci in analyses of population structure.
Collapse
Affiliation(s)
- Miao-Miao Shi
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology (BZF), Halle, Germany.
| | | | | | | |
Collapse
|
8
|
Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F. Understanding and estimating effective population size for practical application in marine species management. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2011; 25:438-449. [PMID: 21284731 DOI: 10.1111/j.1523-1739.2010.01637.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Effective population size (N(e)) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of N(e) is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, N(e) has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved N(e) estimation; however, some obstacles remain for the practical application of N(e) estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of N(e) over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary N(e) estimates and suggest that different sampling designs can be combined to compare largely independent measures of N(e) for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary N(e) and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating N(e) by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating N(e) estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in N(e) from hatchery-based population supplementation.
Collapse
Affiliation(s)
- Matthew P Hare
- Department of Natural Resources, Cornell University, Ithaca NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wahl M, Jormalainen V, Eriksson BK, Coyer JA, Molis M, Schubert H, Dethier M, Karez R, Kruse I, Lenz M, Pearson G, Rohde S, Wikström SA, Olsen JL. Stress ecology in fucus: abiotic, biotic and genetic interactions. ADVANCES IN MARINE BIOLOGY 2011; 59:37-105. [PMID: 21724018 DOI: 10.1016/b978-0-12-385536-7.00002-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global change. This was the motivation to review our knowledge on the stress ecology of a benthic key player, the macroalgal genus Fucus. We first provide a comprehensive review of the genus as an ecological model including what is currently known about the major lineages of Fucus species with respect to hybridization, ecotypic differentiation and speciation; as well as life history, population structure and geographic distribution. We then review our current understanding of both extrinsic (abiotic/biotic) and intrinsic (genetic) stress(es) on Fucus species and how they interact with each other. It is concluded that (i) interactive stress effects appear to be equally distributed over additive, antagonistic and synergistic categories at the level of single experiments, but are predominantly additive when averaged over all studies in a meta-analysis of 41 experiments; (ii) juvenile and adult responses to stress frequently differ and (iii) several species or particular populations of Fucus may be relatively unaffected by climate change as a consequence of pre-adapted ecotypes that collectively express wide physiological tolerences. Future research on Fucus should (i) include additional species, (ii) include marginal populations as models for responses to environmental stress; (iii) assess a wider range of stress combinations, including their temporal fluctuations; (iv) better differentiate between stress sensitivity of juvenile versus adult stages; (v) include a functional genomic component in order to better integrate Fucus' ecological and evolutionary responses to stress regimes and (vi) utilize a multivariate modelling approach in order to develop and understand interaction networks.
Collapse
|
10
|
Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 2009; 10:195-205. [PMID: 19204717 DOI: 10.1038/nrg2526] [Citation(s) in RCA: 998] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effective size of a population, N(e), determines the rate of change in the composition of a population caused by genetic drift, which is the random sampling of genetic variants in a finite population. N(e) is crucial in determining the level of variability in a population, and the effectiveness of selection relative to drift. This article reviews the properties of N(e) in a variety of different situations of biological interest, and the factors that influence it. In particular, the action of selection means that N(e) varies across the genome, and advances in genomic techniques are giving new insights into how selection shapes N(e).
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|