1
|
Calabrese GM, Pfennig KS. Females alter their mate preferences depending on hybridization risk. Biol Lett 2022; 18:20220310. [PMID: 36382373 PMCID: PMC9667136 DOI: 10.1098/rsbl.2022.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/24/2022] [Indexed: 11/18/2023] Open
Abstract
Mating with another species is often maladaptive because it generally results in no or low-fitness offspring. When hybridization is sufficiently costly, individuals should avoid mating with heterospecifics even if it reduces their ability to mate with high-quality conspecifics that resemble heterospecifics. Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females alter their preferences for conspecific male sexual signals (call rate) depending on heterospecific presence. When presented with conspecific signals against a background including both conspecific and heterospecific signals, females preferred male traits that were most dissimilar to heterospecifics-even though these signals are potentially associated with lower-quality mates. However, when these same females were presented with a background that included only conspecific signals, some females switched their preferences, choosing conspecific signals that were exaggerated and indicative of high-quality conspecific mates. Because only some females switched their preferences between these two chorus treatments, there was no population-level preference for exaggerated conspecific male signals in the absence of heterospecifics. These results show that hybridization risk can alter patterns of mate choice and, consequently, sexual selection on male signals. Moreover, they emphasize that the strength and expression of reproductive barriers between species (such as mate choice) can be context-dependent.
Collapse
Affiliation(s)
- Gina M. Calabrese
- Department of Biology, University of North Carolina, CB# 3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, CB# 3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
2
|
Boughman JW, Servedio MR. The ecological stage maintains preference differentiation and promotes speciation. Ecol Lett 2022; 25:926-938. [DOI: 10.1111/ele.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Janette W. Boughman
- Department of Integrative Biology; Ecology, Evolution & Behavior Program Michigan State University East Lansing Michigan USA
| | - Maria R. Servedio
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
3
|
Moser FN, Wilson AB. Reproductive isolation following hybrid speciation in Mediterranean pipefish (Syngnathus spp.). Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
5
|
Coomes CM, Danner RM, Derryberry EP. Elevated temperatures reduce discrimination between conspecific and heterospecific sexual signals. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Franchini P, Jones JC, Xiong P, Kneitz S, Gompert Z, Warren WC, Walter RB, Meyer A, Schartl M. Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish. Nat Commun 2018; 9:5136. [PMID: 30510159 PMCID: PMC6277394 DOI: 10.1038/s41467-018-07648-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/13/2018] [Indexed: 01/13/2023] Open
Abstract
The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome. Fish have a high diversity of sex-determining systems, but the mechanisms responsible for this are not well understood. Here, Franchini et al. show how hybridization and backcrossing have led to the evolution of a new sex chromosome in swordtail fish during 30 years of experimental evolution.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Julia C Jones
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 75123, Sweden
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, 63108, MO, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, 78666-4616, TX, USA
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany. .,Radcliffe Institute for Advanced Study, Harvard University, 9 Garden Street, Cambridge, MA, 02139, USA.
| | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Centre, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Klomp DA, Stuart-Fox D, Cassidy EJ, Ahmad N, Ord TJ. Color pattern facilitates species recognition but not signal detection: a field test using robots. Behav Ecol 2017. [DOI: 10.1093/beheco/arw186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Renoult JP, Kelber A, Schaefer HM. Colour spaces in ecology and evolutionary biology. Biol Rev Camb Philos Soc 2015; 92:292-315. [DOI: 10.1111/brv.12230] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julien P. Renoult
- Institute of Arts Creations Theories & Aesthetics, CNRS-University Paris 1 Panthéon-Sorbonne; 47 r. des bergers 75015 Paris France
| | - Almut Kelber
- Lund Vision Group, Department of Biology; Lund University; Helgonavägen 3 22362 Lund Sweden
| | - H. Martin Schaefer
- Department of Evolutionary Biology and Animal Ecology; Faculty of Biology, University of Freiburg; Hauptstrasse 1 79104 Freiburg Germany
| |
Collapse
|
9
|
|
10
|
Abstract
Polarization of light, and visual sensitivity to it, is pervasive across aquatic and terrestrial environments. Documentation of invertebrate use of polarized light is widespread from navigation and foraging to species recognition. However, studies demonstrating that polarization body patterning serves as a communication signal (e.g., with evidence of changes in receiver behavior) are rare among invertebrate taxa and conspicuously absent among vertebrates. Here, we investigate polarization-mediated communication by northern swordtails, Xiphophorus nigrensis, using a custom-built videopolarimeter to measure polarization signals and an experimental paradigm that manipulates polarization signals without modifying their brightness or color. We conducted mate choice trials in an experimental tank that illuminates a pair of males with light passed through a polarization filter and a diffusion filter. By alternating the order of these filters between males, we presented females with live males that differed in polarization reflectance by >200% but with intensity and color differences below detection thresholds (∼5%). Combining videopolarimetry and polarization-manipulated mate choice trials, we found sexually dimorphic polarized reflectance and polarization-dependent female mate choice behavior with no polarization-dependent courtship behavior by males. Male swordtails exhibit greater within-body and body-to-background polarization contrast than females, and females preferentially associate with high-polarization-reflecting males. We also found limited support that males increase polarization contrast in social conditions over asocial conditions. Polarization cues in mate choice contexts may provide aquatic vertebrates with enhanced detection of specific display features (e.g., movements, angular information), as well as a signaling mechanism that may enhance detection by intended viewers while minimizing detection by others.
Collapse
|
11
|
Passos C, Tassino B, Reyes F, Rosenthal GG. Seasonal variation in female mate choice and operational sex ratio in wild populations of an annual fish, Austrolebias reicherti. PLoS One 2014; 9:e101649. [PMID: 25029019 PMCID: PMC4100733 DOI: 10.1371/journal.pone.0101649] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/09/2014] [Indexed: 12/04/2022] Open
Abstract
The intensity of mating competition and the potential benefits for female of mating with certain males can be influenced by several extrinsic factors, such that behavioral decisions can be highly context-dependent. Short-lived species with a single reproductive season are a unique model to study context-sensitive mating decisions. Through exhaustive sampling in the field and simultaneous choice tests in the laboratory, we evaluated operational sex ratio (OSR) and female mate choice at the beginning and end of the reproductive season in the annual killifish Austrolebias reicherti. We found seasonal change in both OSR and female mate choice. At the start of the reproductive season the OSR did not deviate from parity, and females preferred larger males. Later in the reproductive season, while the proportion of males in the ponds decreased, females became unselective with respect to male size. The particular biological cycle of annual killifish, where both life expectancy and mating opportunities decline sharply over a short timescale, could account for the seasonal change in female choice. Reduction in choosiness could arise from diminished reproductive prospects due to a decline in male availability. Moreover, as the end of the season approaches, any benefits of choosiness are presumably reduced: a female’s fitness will be higher if she mates with any male than if she forgoes reproduction and dies. Future work will disentangle the mechanisms underlying seasonal changes in mating preferences, notably direct responses to demographic factors, environmental cues, or intrinsic changes during development.
Collapse
Affiliation(s)
- Carlos Passos
- Sección Etología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Bettina Tassino
- Sección Etología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Federico Reyes
- Sección Etología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gil G. Rosenthal
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” Calnali, Hidalgo, México
| |
Collapse
|
12
|
Hopkins R, Rausher MD. The Cost of Reinforcement: Selection on Flower Color in Allopatric Populations of Phlox drummondii. Am Nat 2014; 183:693-710. [DOI: 10.1086/675495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Secondi J, Théry M. An ultraviolet signal generates a conflict between sexual selection and species recognition in a newt. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1717-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Gozlan RE, Burnard D, Britton JR, Andreou D. Evidence of female preference for hidden sex signals in distant fish species. Behav Ecol 2013. [DOI: 10.1093/beheco/art084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Zhang YH, Du YF, Zhang JX. Uropygial gland volatiles facilitate species recognition between two sympatric sibling bird species. Behav Ecol 2013. [DOI: 10.1093/beheco/art068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Cui R, Schumer M, Kruesi K, Walter R, Andolfatto P, Rosenthal GG. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution 2013; 67:2166-79. [PMID: 23888843 DOI: 10.1111/evo.12099] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 01/25/2023]
Abstract
Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus.
Collapse
Affiliation(s)
- Rongfeng Cui
- Department of Biology, Texas A&M University, TAMU, College Station, Texas, 77843, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Rosenthal GG. Individual mating decisions and hybridization. J Evol Biol 2013; 26:252-5. [DOI: 10.1111/jeb.12004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 01/14/2023]
Affiliation(s)
- G. G. Rosenthal
- Department of Biology; Texas A&M University; College Station TX USA
- Centro de Investigaciones Científicas de las Huastecas ‘Aguazarca’; Calnali Hidalgo Mexico
| |
Collapse
|
18
|
Carlson BA, Arnegard ME. Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 2012; 4:720-5. [PMID: 22446537 DOI: 10.4161/cib.17483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In African mormyrid fishes, evolutionary change in a sensory region of the brain established an ability to detect subtle variation in electric communication signals. In one lineage, this newfound perceptual ability triggered a dramatic increase in the rates of signal evolution and species diversification. This particular neural innovation is just one in a series of nested evolutionary novelties that characterize the sensory and motor systems of mormyrids, the most speciose group of extant osteoglossomorph fishes. Here we discuss the behavioral significance of these neural innovations, relate them to differences in extant species diversity, and outline possible scenarios by which some of these traits may have fueled diversification. We propose that sensory and motor capabilities limit the extent to which signals evolve and, by extension, the role of communication behavior in the process of speciation. By expanding these capabilities, neural innovations increase the potential for signal evolution and species diversification.
Collapse
|
19
|
|