1
|
Ruebenstahl A, Mongiardino Koch N, Lamsdell JC, Briggs DEG. Convergent evolution of giant size in eurypterids. Proc Biol Sci 2024; 291:20241184. [PMID: 39079669 PMCID: PMC11330558 DOI: 10.1098/rspb.2024.1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
Eurypterids-Palaeozoic marine and freshwater arthropods commonly known as sea scorpions-repeatedly evolved to remarkable sizes (over 0.5 m in length) and colonized continental aquatic habitats multiple times. We compiled data on the majority of eurypterid species and explored several previously proposed explanations for the evolution of giant size in the group, including the potential role of habitat, sea surface temperature and dissolved sea surface oxygen levels, using a phylogenetic comparative approach with a new tip-dated tree. There is no compelling evidence that the evolution of giant size was driven by temperature or oxygen levels, nor that it was coupled with the invasion of continental aquatic environments, latitude or local faunal diversity. Eurypterid body size evolution is best characterized by rapid bursts of change that occurred independently of habitat or environmental conditions. Intrinsic factors played a major role in determining the convergent origin of gigantism in eurypterids.
Collapse
Affiliation(s)
- Alexander Ruebenstahl
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520, USA
| | | | - James C. Lamsdell
- Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, WV26506, USA
| | - Derek E. G. Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520, USA
- Yale Peabody Museum, Yale University, New Haven, CT06520, USA
| |
Collapse
|
2
|
Schmidt M, Melzer RR. The "elongate chelicera problem": A virtual approach in an extinct pterygotid sea scorpion from a 3D kinematic point of view. Ecol Evol 2024; 14:e11303. [PMID: 38766312 PMCID: PMC11099745 DOI: 10.1002/ece3.11303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Chelicerae, distinctive feeding appendages in chelicerates, such as spiders, scorpions, or horseshoe crabs, can be classified based on their orientation relative to the body axis simplified as either orthognathous (parallel) or labidognathous (inclined), exhibiting considerable diversity across various taxa. Among extinct chelicerates, sea scorpions belonging to the Pterygotidae represent the only chelicerates possessing markedly elongated chelicerae relative to body length. Despite various hypotheses regarding the potential ecological functions and feeding movements of these structures, no comprehensive 3D kinematic investigation has been conducted yet to test these ideas. In this study, we generated a comprehensive 3D model of the pterygotid Acutiramus, making the elongated right chelicera movable by equipping it with virtual joint axes for conducting Range of Motion analyses. Due to the absence in the fossil record of a clear indication of the chelicerae orientation and their potential lateral or ventral movements (vertical or horizontal insertion of joint axis 1), we explored the Range of Motion analyses under four distinct kinematic settings with two orientation modes (euthygnathous, klinogathous) analogous to the terminology of the terrestrial relatives. The most plausible kinematic setting involved euthygnathous chelicerae being folded ventrally over a horizontal joint axis. This configuration positioned the chelicera closest to the oral opening. Concerning the maximum excursion angle, our analysis revealed that the chela could open up to 70°, while it could be retracted against the basal element to a maximum of 145°. The maximum excursion in the proximal joint varied between 55° and 120° based on the insertion and orientation. Our findings underscore the utility of applying 3D kinematics to fossilized arthropods for addressing inquiries on functional ecology such as prey capture and handling, enabling insights into their possible behavioral patterns. Pterygotidae likely captured and processed their prey using the chelicerae, subsequently transporting it to the oral opening with the assistance of other prosomal appendages.
Collapse
Affiliation(s)
- Michel Schmidt
- Yunnan Key Laboratory for PalaeobiologyYunnan UniversityKunmingChina
- MEC International Joint Laboratory for Palaeobiology and PalaeoenvironmentYunnan UniversityKunmingChina
- Bavarian State Collection of ZoologyBavarian Natural History CollectionsMünchenGermany
- Ludwig‐Maximilians‐University MunichFaculty of BiologyBiocentreMunichGermany
| | - Roland R. Melzer
- MEC International Joint Laboratory for Palaeobiology and PalaeoenvironmentYunnan UniversityKunmingChina
- Bavarian State Collection of ZoologyBavarian Natural History CollectionsMünchenGermany
- Ludwig‐Maximilians‐University MunichFaculty of BiologyBiocentreMunichGermany
- GeoBio‐CenterLudwig‐Maximilians‐Universität MünchenMünchenGermany
| |
Collapse
|
3
|
Bicknell RDC, Simone Y, van der Meijden A, Wroe S, Edgecombe GD, Paterson JR. Biomechanical analyses of pterygotid sea scorpion chelicerae uncover predatory specialisation within eurypterids. PeerJ 2022; 10:e14515. [PMID: 36523454 PMCID: PMC9745958 DOI: 10.7717/peerj.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Eurypterids (sea scorpions) are extinct aquatic chelicerates. Within this group, members of Pterygotidae represent some of the largest known marine arthropods. Representatives of this family all have hypertrophied, anteriorly-directed chelicerae and are commonly considered Silurian and Devonian apex predators. Despite a long history of research interest in these appendages, pterygotids have been subject to limited biomechanical investigation. Here, we present finite element analysis (FEA) models of four different pterygotid chelicerae-those of Acutiramus bohemicus, Erettopterus bilobus, Jaekelopterus rhenaniae, and Pterygotus anglicus-informed through muscle data and finite element models (FEMs) of chelae from 16 extant scorpion taxa. We find that Er. bilobus and Pt. anglicus have comparable stress patterns to modern scorpions, suggesting a generalised diet that probably included other eurypterids and, in the Devonian species, armoured fishes, as indicated by co-occurring fauna. Acutiramus bohemicus is markedly different, with the stress being concentrated in the proximal free ramus and the serrated denticles. This indicates a morphology better suited for targeting softer prey. Jaekelopterus rhenaniae exhibits much lower stress across the entire model. This, combined with an extremely large body size, suggests that the species likely fed on larger and harder prey, including heavily armoured fishes. The range of cheliceral morphologies and stress patterns within Pterygotidae demonstrate that members of this family had variable diets, with only the most derived species likely to feed on armoured prey, such as placoderms. Indeed, increased sizes of these forms throughout the mid-Palaeozoic may represent an 'arms race' between eurypterids and armoured fishes, with Devonian pterygotids adapting to the rapid diversification of placoderms.
Collapse
Affiliation(s)
- Russell D. C. Bicknell
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
- Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, Vila do Conde, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, Vila do Conde, Portugal
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
- Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Lamsdell JC. The Chelicerae of Slimonia (Eurypterida; Pterygotoidea). BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.3374/014.063.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James C. Lamsdell
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506 USA—
| |
Collapse
|
5
|
Schmidt M, Melzer RR, Plotnick RE, Bicknell RD. Spines and baskets in apex predatory sea scorpions uncover unique feeding strategies using 3D-kinematics. iScience 2022; 25:103662. [PMID: 35024591 PMCID: PMC8733173 DOI: 10.1016/j.isci.2021.103662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/21/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Megalograptidae and Mixopteridae with elongate, spinose prosomal appendages are unique early Palaeozoic sea scorpions (Eurypterida). These features were presumably used for hunting, an untested hypothesis. Here, we present 3D model-based kinematic range of motion (ROM) analyses of Megalograptus ohioensis and Mixopterus kiaeri and compare these to modern analogs. This comparison confirms that the eurypterid appendages were likely raptorial, used in grabbing and holding prey for consumption. The Megalograptus ohioensis model illustrates notable Appendage III flexibility, indicating hypertrophied spines on Appendage III may have held prey, while Appendage II likely ripped immobilized prey. Mixopterus kiaeri, conversely, constructed a capture basket with Appendage III, and impaled prey with Appendage II elongated spines. Thus, megalograptid and mixopterid frontalmost appendages constructed a double basket system prior to moving dismembered prey to the chelicerae. Such 3D kinematic modeling presents a more complete understanding of these peculiar euchelicerates and highlights their possible position within past ecosystems.
Collapse
Affiliation(s)
- Michel Schmidt
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland R. Melzer
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roy E. Plotnick
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Russell D.C. Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
6
|
Bicknell RDC, Melzer RR, Schmidt M. Three-dimensional kinematics of euchelicerate limbs uncover functional specialization in eurypterid appendages. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Sea scorpions (Euchelicerata: Eurypterida) explored extreme limits of the aquatic euchelicerate body plan, such that the group contains the largest known marine euarthropods. Inferences on eurypterid life modes, in particular walking and eating, are commonly made by comparing the group with horseshoe crabs (Euchelicerata: Xiphosura). However, no models have been presented to test these hypotheses. Here, we reconstruct prosomal appendages of two exceptionally well-preserved eurypterids, Eurypterus tetragonophthalmus and Pentecopterus decorahensis, and model the flexure and extension of these appendages kinematically in three dimensions (3D). We compare these models with 3D kinematic models of Limulus polyphemus prosomal appendages. This comparison highlights that the examined eurypterid prosomal appendages could not have moved prey items effectively to the gnathal edges and would therefore not have emulated the motion of an L. polyphemus walking leg. It seems that these eurypterid appendages were used primarily to walk or grab prey, and other appendages would have moved prey for mastication. Such 3D kinematic modelling highlights how eurypterid appendage morphologies placed substantial limits on their function, suggesting a high degree of specialization, especially when compared with horseshoe crabs. Such three-dimensional kinematic modelling of these extinct groups therefore presents an innovative approach to understanding the position of these animals within their respective palaeoecosystems.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale,NSW 2351,Australia
| | - Roland R Melzer
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich,Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Munich,Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich,Germany
| | - Michel Schmidt
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich,Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Munich,Germany
| |
Collapse
|
7
|
Walsh MR, Gillis MK. Transgenerational plasticity in the eye size of Daphnia. Biol Lett 2021; 17:20210143. [PMID: 34129799 PMCID: PMC8205523 DOI: 10.1098/rsbl.2021.0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 11/12/2022] Open
Abstract
It is well established that environmental signals can induce phenotypic responses that persist for multiple generations. The induction of such 'transgenerational plasticity' (TGP) depends upon the ability of organisms to accurately receive and process information from environmental signals. Thus, sensory systems are likely intertwined with TGP. Here we tested the link between an environmental stressor and transgenerational responses in a component of the sensory system (eye size) that is linked to enhanced vision and ecologically relevant behaviours. We reared 45 clones of Daphnia pulicaria in the presence and absence of a low-quality resource (cyanobacteria) and evaluated shifts in relative eye size in offspring. Our results revealed divergent shifts in relative eye size within- and across-generations. Parental Daphnia that were fed cyanobacteria produced a smaller eye than Daphnia fed high-quality algae. Such differences were then reversed in the offspring generation; Daphnia whose mothers were fed cyanobacteria produced larger eyes than Daphnia that were continually fed green algae. We discuss the extent to which this maternal effect on eye size is an adaptive response linked to improved foraging.
Collapse
Affiliation(s)
- Matthew R. Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Michael K. Gillis
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
8
|
Ruebenstahl A, Ciurca SJ, Briggs DEG. A Giant Eurypterus from the Silurian (Pridoli) Bertie Group of North America. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.3374/014.062.0101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Ruebenstahl
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109 USA
| | | | - Derek E. G. Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109; and Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8118 USA —
| |
Collapse
|
9
|
Feller KD, Sharkey CR, McDuffee-Altekruse A, Bracken-Grissom HD, Lord NP, Porter ML, Schweikert LE. Surf and turf vision: Patterns and predictors of visual acuity in compound eye evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101002. [PMID: 33191145 DOI: 10.1016/j.asd.2020.101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Eyes have the flexibility to evolve to meet the ecological demands of their users. Relative to camera-type eyes, the fundamental limits of optical diffraction in arthropod compound eyes restrict the ability to resolve fine detail (visual acuity) to much lower degrees. We tested the capacity of several ecological factors to predict arthropod visual acuity, while simultaneously controlling for shared phylogenetic history. In this study, we have generated the most comprehensive review of compound eye visual acuity measurements to date, containing 385 species that span six of the major arthropod classes. An arthropod phylogeny, made custom to this database, was used to develop a phylogenetically-corrected generalized least squares (PGLS) linear model to evaluate four ecological factors predicted to underlie compound eye visual acuity: environmental light intensity, foraging strategy (predator vs. non-predator), horizontal structure of the visual scene, and environmental medium (air vs. water). To account for optical constraints on acuity related to animal size, body length was also included, but this did not show a significant effect in any of our models. Rather, the PGLS analysis revealed that the strongest predictors of compound eye acuity are described by a combination of environmental medium, foraging strategy, and environmental light intensity.
Collapse
Affiliation(s)
- Kathryn D Feller
- Union College, Department of Biological Sciences, 807 Union St., Schenectady, NY, 12308, USA.
| | - Camilla R Sharkey
- University of Minnesota, Ecology Evolution and Behavior Department, Saint Paul, MN, USA
| | | | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Nathan P Lord
- Louisiana State University, Entomology Department, Baton Rouge, LA, USA
| | - Megan L Porter
- University of Hawai'i at Mānoa, Department of Biology, Honolulu, HI, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
10
|
Paterson JR, Edgecombe GD, García-Bellido DC. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. SCIENCE ADVANCES 2020; 6:6/49/eabc6721. [PMID: 33268353 PMCID: PMC7821881 DOI: 10.1126/sciadv.abc6721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 05/28/2023]
Abstract
Radiodonts are nektonic stem-group euarthropods that played various trophic roles in Paleozoic marine ecosystems, but information on their vision is limited. Optical details exist only in one species from the Cambrian Emu Bay Shale of Australia, here assigned to Anomalocaris aff. canadensis We identify another type of radiodont compound eye from this deposit, belonging to 'Anomalocaris' briggsi This ≤4-cm sessile eye has >13,000 lenses and a dorsally oriented acute zone. In both taxa, lenses were added marginally and increased in size and number throughout development, as in many crown-group euarthropods. Both species' eyes conform to their inferred lifestyles: The macrophagous predator A. aff. canadensis has acute stalked eyes (>24,000 lenses each) adapted for hunting in well-lit waters, whereas the suspension-feeding 'A.' briggsi could detect plankton in dim down-welling light. Radiodont eyes further demonstrate the group's anatomical and ecological diversity and reinforce the crucial role of vision in early animal ecosystems.
Collapse
Affiliation(s)
- John R Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Diego C García-Bellido
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
11
|
|
12
|
Howard RJ, Puttick MN, Edgecombe GD, Lozano-Fernandez J. Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100997. [PMID: 33039753 DOI: 10.1016/j.asd.2020.100997] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The majority of extant arachnids are terrestrial, but other chelicerates are generally aquatic, including horseshoe crabs, sea spiders, and the extinct eurypterids. It is necessary to determine whether arachnids are exclusively descended from a single common ancestor (monophyly), because only that relationship is compatible with one land colonisation in chelicerate evolutionary history. Some studies have cast doubt on arachnid monophyly and recast the origins of their terrestrialization. These include some phylogenomic analyses placing horseshoe crabs within Arachnida, and from aquatic Palaeozoic stem-group scorpions. Here, we evaluate the possibility of arachnid monophyly by considering morphology, fossils and molecules holistically. We argue arachnid monophyly obviates the need to posit reacquisition/retention of aquatic characters such as gnathobasic feeding and book gills without trabeculae from terrestrial ancestors in horseshoe crabs, and that the scorpion total-group contains few aquatic taxa. We built a matrix composed of 200 slowly-evolving genes and re-analysed two published molecular datasets. We retrieved arachnid monophyly where other studies did not - highlighting the difficulty of resolving chelicerate relationships from current molecular data. As such, we consider arachnid monophyly the best-supported hypothesis. Finally, we inferred that arachnids terrestrialized during the Cambrian-Ordovician using the slow-evolving molecular matrix, in agreement with recent analyses.
Collapse
Affiliation(s)
- Richard J Howard
- Department of Biosciences, University of Exeter, Penryn Campus, UK; Department of Earth Sciences, The Natural History Museum, UK.
| | - Mark N Puttick
- School of Biochemistry & Biological Sciences, University of Bath, Bath, UK
| | | | - Jesus Lozano-Fernandez
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
13
|
Randle E, Sansom RS. Bite marks and predation of fossil jawless fish during the rise of jawed vertebrates. Proc Biol Sci 2019; 286:20191596. [PMID: 31847724 PMCID: PMC6939932 DOI: 10.1098/rspb.2019.1596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although modern vertebrate diversity is dominated by jawed vertebrates, early vertebrate assemblages were predominantly composed of jawless fishes. Hypotheses for this faunal shift and the Devonian decline of jawless vertebrates include predation and competitive replacement. The nature and prevalence of ecological interactions between jawed and jawless vertebrates are highly relevant to both hypotheses, but direct evidence is limited. Here, we use the occurrence and distribution of bite mark type traces in fossil jawless armoured heterostracans to infer predation interactions. A total of 41 predated specimens are recorded; their prevalence increases through time, reaching a maximum towards the end of the Devonian. The bite mark type traces significantly co-occur with jawed vertebrates, and their distribution through time is correlated with jawed vertebrate diversity patterns, particularly placoderms and sarcopterygians. Environmental and ecological turnover in the Devonian, especially relating to the nekton revolution, have been inferred as causes of the faunal shift from jawless to jawed vertebrates. Here, we provide direct evidence of escalating predation from jawed vertebrates as a potential contributing factor to the demise and extinction of ostracoderms.
Collapse
Affiliation(s)
- Emma Randle
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Robert S Sansom
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Schoenemann B, Poschmann M, Clarkson ENK. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci Rep 2019; 9:17797. [PMID: 31780700 PMCID: PMC6882788 DOI: 10.1038/s41598-019-53590-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Sea scorpions (Eurypterida, Chelicerata) of the Lower Devonian (~400 Mya) lived as large, aquatic predators. The structure of modern chelicerate eyes is very different from that of mandibulate compound eyes [Mandibulata: Crustacea and Tracheata (Hexapoda, such as insects, and Myriapoda)]. Here we show that the visual system of Lower Devonian (~400 Mya) eurypterids closely matches that of xiphosurans (Xiphosura, Chelicerata). Modern representatives of this group, the horseshoe crabs (Limulidae), have cuticular lens cylinders and usually also an eccentric cell in their sensory apparatus. This strongly suggests that the xiphosuran/eurypterid compound eye is a plesiomorphic structure with respect to the Chelicerata, and probably ancestral to that of Euchelicerata, including Eurypterida, Arachnida and Xiphosura. This is supported by the fact that some Palaeozoic scorpions also possessed compound eyes similar to those of eurypterids. Accordingly, edge enhancement (lateral inhibition), organised by the eccentric cell, most useful in scattered light-conditions, may be a very old mechanism, while the single-lens system of arachnids is possibly an adaptation to a terrestrial life-style.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- University of Cologne, Zoology Department/ Neurobiology/Animal Physiology/Institute of Biology Education, Herbert-Lewin-Straße 10, D-50931, Cologne, Germany.
| | - Markus Poschmann
- Generaldirektion Kulturelles Erbe RLP, Direktion Landesarchäologie/Erdgeschichte, Niederberger Höhe 1, D-56077, Koblenz, Germany
| | - Euan N K Clarkson
- University of Edinburgh, Grant Institute, School of Geosciences, West Mains Road, Edinburgh, EH9 3JW, Scotland
| |
Collapse
|
15
|
Bicknell RDC, Amati L, Ortega-Hernández J. New insights into the evolution of lateral compound eyes in Palaeozoic horseshoe crabs. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Vision allows animals to interact with their environment. Aquatic chelicerates dominate the early record of lateral compound eyes among non-biomineralizing crown-group euarthropods. Although the conservative morphology of lateral eyes in Xiphosura is potentially plesiomorphic for Euarthropoda, synziphosurine eye organization has received little attention despite their early diverging phylogenetic position. Here, we re-evaluate the fossil evidence for lateral compound eyes in the synziphosurines Bunodes sp., Cyamocephalus loganensis, Legrandella lombardii, Limuloides limuloides, Pseudoniscus clarkei, Pseudoniscus falcatus and Pseudoniscus roosevelti. We compare these data with lateral eyes in the euchelicerates Houia yueya, Kasibelinurus amicorum and Lunataspis aurora. We find no convincing evidence for lateral eyes in most studied taxa, and Pseudoniscus roosevelti and Legrandella lombardii are the only synziphosurines with this feature. Our findings support two scenarios for euchelicerate lateral eye evolution. The elongate-crescentic lateral eyes of Legrandella lombardii might represent the ancestral organization, as suggested by the phylogenetic position of this taxon in stem-group Euchelicerata. Alternatively, the widespread occurrence of kidney-shaped lateral eyes in stem-group Xiphosura and stem-group Arachnida could represent the plesiomorphic condition; Legrandella lombardii eyes would therefore be derived. Both evolutionary scenarios support the interpretation that kidney-shaped lateral eyes are ancestral for crown-group Euchelicerata and morphologically conserved in extant Limulus polyphemus.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Lisa Amati
- Paleontology, New York State Museum, Albany, NY, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Beston SM, Dudycha JL, Post DM, Walsh MR. The evolution of eye size in response to increased fish predation in Daphnia. Evolution 2019; 73:792-802. [PMID: 30843603 DOI: 10.1111/evo.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/27/2023]
Abstract
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator-induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild-caught and third-generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild-caught specimens did not differ in eye size across all lakes. However, third-generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
17
|
Lamsdell JC, Gunderson GO, Meyer RC. A common arthropod from the Late Ordovician Big Hill Lagerstätte (Michigan) reveals an unexpected ecological diversity within Chasmataspidida. BMC Evol Biol 2019; 19:8. [PMID: 30621579 PMCID: PMC6325806 DOI: 10.1186/s12862-018-1329-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Chasmataspidids are a rare group of chelicerate arthropods known from 12 species assigned to ten genera, with a geologic range extending from the Ordovician to the Devonian. The Late Ordovician (Richmondian) fauna of the Big Hill Lagerstätte includes a new species of chasmataspidid represented by 55 specimens. This taxon is only the second chasmataspidid described from the Ordovician and preserves morphological details unknown from any of the previously described species. RESULTS The new chasmataspidid species is described as Hoplitaspis hiawathai gen. et sp. nov.. Comparison with all other known chasmataspidids indicates that Hoplitaspis occupies an intermediate morphological position between the Ordovician Chasmataspis and the Silurian-Devonian diploaspidids. While the modification of appendage VI into a broad swimming paddle allies Hoplitaspis to the Diploaspididae, the paddle lacks the anterior 'podomere 7a' found in other diploaspidids and shows evidence of having been derived from a Chasmataspis-like chelate appendage. Other details, such as the large body size and degree of expression of the first tergite, show clear affinities with Chasmataspis, providing strong support for chasmataspidid monophyly. CONCLUSIONS The large body size and well-developed appendage armature of Hoplitaspis reveals that chasmataspidids occupied a greater breadth of ecological roles than previously thought, with the abundance of available specimens indicating that Hoplitaspis was an important component of the local community. The miniaturization and ecological limiting of diploaspidids potentially coincides with the major radiation of eurypterids and may suggest some degree of competition between the two groups. The geographic distribution of chasmataspidid species suggests the group may have originated in Laurentia and migrated to the paleocontinents of Baltica and Siberia as tectonic processes drew the paleocontinents into close proximity.
Collapse
Affiliation(s)
- James C. Lamsdell
- Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, WV 26501 USA
| | | | | |
Collapse
|
18
|
Persons WS. Additional Specimens and a Critical Consideration of Eurypterid Opisthosoma Flexibility: (A Reply to Lamsdell et al.). Am Nat 2018. [DOI: 10.1086/695956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Lamsdell JC, Marshall DJ, Briggs DEG. Hit and Miss: (A Comment on Persons and Acorn, “A Sea Scorpion’s Strike: New Evidence of Extreme Lateral Flexibility in the Opisthosoma of Eurypterids”). Am Nat 2018. [DOI: 10.1086/695955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Beston SM, Wostl E, Walsh MR. The evolution of vertebrate eye size across an environmental gradient: phenotype does not predict genotype in a Trinidadian killifish. Evolution 2017; 71:2037-2049. [PMID: 28574174 DOI: 10.1111/evo.13283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores ("high predation" sites), and no predators ("Rivulus-only" sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Elijah Wostl
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
21
|
Lamsdell JC, Selden PA. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution 2016; 71:95-110. [PMID: 27783385 DOI: 10.1111/evo.13106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023]
Abstract
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.
Collapse
Affiliation(s)
- James C Lamsdell
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024.,Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, West Virginia, 26506
| | - Paul A Selden
- Paleontological Institute and Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas, 66045.,Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| |
Collapse
|