1
|
Summers TC, Ord TJ. Signal detection shapes ornament allometry in functionally convergent Caribbean Anolis and Southeast Asian Draco lizards. J Evol Biol 2022; 35:1508-1523. [PMID: 36177770 PMCID: PMC9828585 DOI: 10.1111/jeb.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
Visual ornaments have long been assumed to evolve hyper-allometry as an outcome of sexual selection. Yet growing evidence suggests many sexually selected morphologies can exhibit other scaling patterns with body size, including hypo-allometry. The large conspicuous throat fan, or dewlap, of arboreal Caribbean Anolis lizards was one ornament previously thought to conform to the classical expectation of hyper-allometry. We re-evaluated this classic example alongside a second arboreal group of lizards that has also independently evolved a functionally equivalent dewlap, the Southeast Asian Draco lizards. Across multiple closely related species in both genera, the Anolis and Draco dewlaps were either isometric or had hypo-allometric scaling patterns. In the case of the Anolis dewlap, variation in dewlap allometry was predicted by the distance of conspecifics and the light environment in which the dewlap was typically viewed. Signal efficacy, therefore, appears to have driven the evolution of hypo-allometry in what was originally thought to be a sexually selected ornament with hyper-allometry. Our findings suggest that other elaborate morphological structures used in social communication might similarly exhibit isometric or hypo-allometric scaling patterns because of environmental constraints on signal detection.
Collapse
Affiliation(s)
- Thomas C. Summers
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental SciencesUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Terry J. Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental SciencesUniversity of New South WalesKensingtonNew South WalesAustralia
| |
Collapse
|
2
|
Assis BA, Avery JD, Earley RL, Langkilde T. Masculinized Sexual Ornaments in Female Lizards Correlate with Ornament-Enhancing Thermoregulatory Behavior. Integr Org Biol 2022; 4:obac029. [PMID: 36034057 PMCID: PMC9409079 DOI: 10.1093/iob/obac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The adaptive significance of colorful or exaggerated traits (i.e., ornaments) expressed in females is often unclear. Competing hypotheses suggest that expression of female ornaments arises from maladaptive (or neutral) genetic inheritance from males along with incomplete epigenetic regulation, or from positive selection for ornaments in females under social competition. Whether costly or advantageous, the visibility of such traits can sometimes be behaviorally modulated in order to maximize fitness. Female eastern fence lizards express blue badges that are variable in size and color saturation. These are rudimentary compared to those seen in males and carry important costs such as reduced mating opportunities. Body temperature is a well-established enhancer of badge color, and thus thermoregulation may be one way these animals modulate badge visibility. We quantified realized body temperatures of female lizards paired in laboratory trials and observed that females with larger badges attained higher body temperatures when freely allowed to thermoregulate, sometimes beyond physiological optima. In this association between phenotype and behavior, females with larger badges exhibited thermoregulatory patterns that increase their badges’ visibility. This signal-enhancing behavior is difficult to reconcile with the widely held view that female ornaments are maladaptive, suggesting they may carry context-dependent social benefits.
Collapse
Affiliation(s)
- B A Assis
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| | - J D Avery
- Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology, Pennsylvania State University , University Park, PA 16802
| | - R L Earley
- Department of Biological Sciences, University of Alabama , Tuscaloosa, AL 35487
| | - T Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| |
Collapse
|
3
|
Properties of an attention-grabbing motion signal: a comparison of tail and body movements in a lizard. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:373-385. [PMID: 35113201 PMCID: PMC9123084 DOI: 10.1007/s00359-022-01544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
Abstract
Animals signals must be detected by receiver sensory systems, and overcome a variety of local ecological factors that could otherwise affect their transmission and reception. Habitat structure, competition, avoidance of unintended receivers and varying environmental conditions have all been shown to influence how animals signal. Environmental noise is also crucial, and animals modify their behavior in response to it. Animals generating movement-based visual signals have to contend with wind-blown plants that generate motion noise and can affect the detection of salient movements. The lizard Amphibolurus muricatus uses tail flicking at the start of displays to attract attention, and we hypothesized that tail movements are ideally suited to this function. We compared visual amplitudes generated by tail movements with push-ups, which are a key component of the rest of the display. We show that tail movement amplitudes are highly variable over the course of the display but consistently greater than amplitudes generated by push-ups and not constrained by viewing position. We suggest that these features, combined with the tail being a light structure that does not compromise other activities, provide an ideal introductory component for attracting attention in the ecological setting in which they are generated.
Collapse
|
4
|
White TE, Latty T. Flies improve the salience of iridescent sexual signals by orienting toward the sun. Behav Ecol 2020. [DOI: 10.1093/beheco/araa098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sunlight is the ultimate source of most visual signals. Theory predicts strong selection for its effective use during communication, with functional links between signal designs and display behaviors a likely result. This is particularly true for iridescent structural colors, whose moment-to-moment appearance bears a heightened sensitivity to the position of signalers, receivers, and the sun. Here, we experimentally tested this prediction using Lispe cana, a muscid fly in which males present their structurally colored faces and wings to females during ground-based sexual displays. In field-based assays, we found that males actively bias the orientation of their displays toward the solar azimuth under conditions of full sunlight and do so across the entire day. This bias breaks down, however, when the sun is naturally concealed by heavy cloud or experimentally obscured. Our modeling of the appearance of male signals revealed clear benefits for the salience of male ornaments, with a roughly 4-fold increase in subjective luminance achievable through accurate display orientation. These findings offer fine-scale, causal evidence for the active control of sexual displays to enhance the appearance of iridescent signals. More broadly, they speak to predicted coevolution between dynamic signal designs and presentation behaviors, and support arguments for a richer appreciation of the fluidity of visual communication.
Collapse
Affiliation(s)
- Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Tanya Latty
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Barnett JB, Michalis C, Anderson HM, McEwen BL, Yeager J, Pruitt JN, Scott-Samuel NE, Cuthill IC. Imperfect transparency and camouflage in glass frogs. Proc Natl Acad Sci U S A 2020; 117:12885-12890. [PMID: 32457164 PMCID: PMC7293656 DOI: 10.1073/pnas.1919417117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Camouflage patterns prevent detection and/or recognition by matching the background, disrupting edges, or mimicking particular background features. In variable habitats, however, a single pattern cannot match all available sites all of the time, and efficacy may therefore be reduced. Active color change provides an alternative where coloration can be altered to match local conditions, but again efficacy may be limited by the speed of change and range of patterns available. Transparency, on the other hand, creates high-fidelity camouflage that changes instantaneously to match any substrate but is potentially compromised in terrestrial environments where image distortion may be more obvious than in water. Glass frogs are one example of terrestrial transparency and are well known for their transparent ventral skin through which their bones, intestines, and beating hearts can be seen. However, sparse dorsal pigmentation means that these frogs are better described as translucent. To investigate whether this imperfect transparency acts as camouflage, we used in situ behavioral trials, visual modeling, and laboratory psychophysics. We found that the perceived luminance of the frogs changed depending on the immediate background, lowering detectability and increasing survival when compared to opaque frogs. Moreover, this change was greatest for the legs, which surround the body at rest and create a diffuse transition from background to frog luminance rather than a sharp, highly salient edge. This passive change in luminance, without significant modification of hue, suggests a camouflage strategy, "edge diffusion," distinct from both transparency and active color change.
Collapse
Affiliation(s)
- James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada;
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| | - Constantine Michalis
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| | - Hannah M Anderson
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brendan L McEwen
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Justin Yeager
- Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, 170125 Quito, Ecuador
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | - Innes C Cuthill
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| |
Collapse
|
6
|
Khandelwal PC, Hedrick TL. How biomechanics, path planning and sensing enable gliding flight in a natural environment. Proc Biol Sci 2020; 287:20192888. [PMID: 32070254 DOI: 10.1098/rspb.2019.2888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gliding animals traverse cluttered aerial environments when performing ecologically relevant behaviours. However, it is unknown how gliders execute collision-free flight over varying distances to reach their intended target. We quantified complete glide trajectories amid obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve. In this cluttered habitat, the lizards used glide paths with fewer obstacles than alternatives of similar distance. Their takeoff direction oriented them away from obstacles in their path and they subsequently made mid-air turns with accelerations of up to 0.5 g to reorient towards the target tree. These manoeuvres agreed well with a vision-based steering model which maximized their bearing angle with the obstacle while minimizing it with the target tree. Nonetheless, negotiating obstacles reduced mid-glide shallowing rates, implying greater loss of altitude. Finally, the lizards initiated a pitch-up landing manoeuvre consistent with a visual trigger model, suggesting that the landing decision was based on the optical size and speed of the target. They subsequently followed a controlled-collision approach towards the target, ending with variable impact speeds. Overall, the visually guided path planning strategy that enabled collision-free gliding required continuous changes in the gliding kinematics such that the lizards never attained theoretically ideal steady-state glide dynamics.
Collapse
Affiliation(s)
- Pranav C Khandelwal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Dong CM, McLean CA, Moussalli A, Stuart‐Fox D. Conserved visual sensitivities across divergent lizard lineages that differ in an ultraviolet sexual signal. Ecol Evol 2019; 9:11824-11832. [PMID: 31695890 PMCID: PMC6822044 DOI: 10.1002/ece3.5686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023] Open
Abstract
The sensory drive hypothesis predicts the correlated evolution of signaling traits and sensory perception in differing environments. For visual signals, adaptive divergence in both color signals and visual sensitivities between populations may contribute to reproductive isolation and promote speciation, but this has rarely been tested or shown in terrestrial species. We tested whether opsin protein expression differs between divergent lineages of the tawny dragon (Ctenophorus decresii) that differ in the presence/absence of an ultraviolet sexual signal. We measured the expression of four retinal cone opsin genes (SWS1, SWS2, RH2, and LWS) using droplet digital PCR. We show that gene expression between lineages does not differ significantly, including the UV wavelength sensitive SWS1. We discuss these results in the context of mounting evidence that visual sensitivities are highly conserved in terrestrial systems. Multiple competing requirements may constrain divergence of visual sensitivities in response to sexual signals. Instead, signal contrast could be increased via alternative mechanisms, such as background selection. Our results contribute to a growing understanding of the roles of visual ecology, phylogeny, and behavior on visual system evolution in reptiles.
Collapse
Affiliation(s)
- Caroline M. Dong
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Sciences DepartmentMuseums VictoriaCarltonVictoriaAustralia
| | - Claire A. McLean
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Sciences DepartmentMuseums VictoriaCarltonVictoriaAustralia
| | | | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
8
|
Simpson RK, McGraw KJ. Interspecific Covariation in Courtship Displays, Iridescent Plumage, Solar Orientation, and Their Interactions in Hummingbirds. Am Nat 2019; 194:441-454. [DOI: 10.1086/704774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Bian X, Chandler T, Pinilla A, Peters RA. Now You See Me, Now You Don't: Environmental Conditions, Signaler Behavior, and Receiver Response Thresholds Interact to Determine the Efficacy of a Movement-Based Animal Signal. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Simpson RK, McGraw KJ. Two ways to display: male hummingbirds show different color-display tactics based on sun orientation. Behav Ecol 2018. [DOI: 10.1093/beheco/ary016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Richard K Simpson
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
| |
Collapse
|
11
|
Echeverri SA, Morehouse NI, Zurek DB. Control of signaling alignment during the dynamic courtship display of a jumping spider. Behav Ecol 2017. [DOI: 10.1093/beheco/arx107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sebastian A Echeverri
- Department of Biological Sciences, University of Pittsburgh, 4249 5th Avenue, Pittsburgh, PA 15260, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, 4249 5th Avenue, Pittsburgh, PA 15260, USA
- Department of Biological Sciences, University of Cincinnati, 7148 Edwards One, Cincinnati, OH 45221, USA
| | - Daniel B Zurek
- Department of Biological Sciences, University of Pittsburgh, 4249 5th Avenue, Pittsburgh, PA 15260, USA
- Department of Biological Sciences, University of Cincinnati, 7148 Edwards One, Cincinnati, OH 45221, USA
| |
Collapse
|
12
|
Klomp DA, Stuart-Fox D, Das I, Ord TJ. Gliding lizards use the position of the sun to enhance social display. Biol Lett 2017; 13:20160979. [PMID: 28179410 PMCID: PMC5326517 DOI: 10.1098/rsbl.2016.0979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/14/2017] [Indexed: 11/12/2022] Open
Abstract
Effective communication requires animal signals to be readily detected by receivers in the environments in which they are typically given. Certain light conditions enhance the visibility of colour signals and these conditions can vary depending on the orientation of the sun and the position of the signaller. We tested whether Draco sumatranus gliding lizards modified their position relative to the sun to enhance the conspicuousness of their throat-fan (dewlap) during social display to conspecifics. The dewlap was translucent, and we found that lizards were significantly more likely to orient themselves perpendicular to the sun when displaying. This increases the dewlap's radiance, and likely, its conspicuousness, by increasing the amount of light transmitted through the ornament. This is a rare example of a behavioural adaptation for enhancing the visibility of an ornament to distant receivers.
Collapse
Affiliation(s)
- Danielle A Klomp
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Devi Stuart-Fox
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Terry J Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|