1
|
Golikov AV, Xavier JC, Ceia FR, Queirós JP, Bustamante P, Couperus B, Guillou G, Larionova AM, Sabirov RM, Somes CJ, Hoving HJ. Insights on long-term ecosystem changes from stable isotopes in historical squid beaks. BMC Ecol Evol 2024; 24:90. [PMID: 38956464 PMCID: PMC11221165 DOI: 10.1186/s12862-024-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.
Collapse
Affiliation(s)
| | - José C Xavier
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Filipe R Ceia
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José P Queirós
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, La Rochelle, France
| | - Bram Couperus
- Wageningen Marine Research, Wageningen University and Research, IJmuiden, The Netherlands
| | - Gaël Guillou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, La Rochelle, France
| | | | | | | | - Henk-Jan Hoving
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
2
|
Vacquié-Garcia J, Spitz J, Hammill M, Stenson GB, Kovacs KM, Lydersen C, Chimienti M, Renaud M, Méndez Fernandez P, Jeanniard du Dot T. Foraging habits of Northwest Atlantic hooded seals over the past 30 years: Future habitat suitability under global warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17186. [PMID: 38450925 DOI: 10.1111/gcb.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
The Arctic is a global warming 'hot-spot' that is experiencing rapid increases in air and ocean temperatures and concomitant decreases in sea ice cover. These environmental changes are having major consequences on Arctic ecosystems. All Arctic endemic marine mammals are highly dependent on ice-associated ecosystems for at least part of their life cycle and thus are sensitive to the changes occurring in their habitats. Understanding the biological consequences of changes in these environments is essential for ecosystem management and conservation. However, our ability to study climate change impacts on Arctic marine mammals is generally limited by the lack of sufficiently long data time series. In this study, we took advantage of a unique dataset on hooded seal (Cystophora cristata) movements (and serum samples) that spans more than 30 years in the Northwest Atlantic to (i) investigate foraging (distribution and habitat use) and dietary (trophic level of prey and location) habits over the last three decades and (ii) predict future locations of suitable habitat given a projected global warming scenario. We found that, despite a change in isotopic signatures that might suggest prey changes over the 30-year period, hooded seals from the Northwest Atlantic appeared to target similar oceanographic characteristics throughout the study period. However, over decades, they have moved northward to find food. Somewhat surprisingly, foraging habits differed between seals breeding in the Gulf of St Lawrence vs those breeding at the "Front" (off Newfoundland). Seals from the Gulf favoured colder waters while Front seals favoured warmer waters. We predict that foraging habitats for hooded seals will continue to shift northwards and that Front seals are likely to have the greatest resilience. This study shows how hooded seals are responding to rapid environmental change and provides an indication of future trends for the species-information essential for effective ecosystem management and conservation.
Collapse
Affiliation(s)
- Jade Vacquié-Garcia
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France
| | - Jérôme Spitz
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France
- Observatoire Pelagis, UAR 3462 La Rochelle Université - CNRS, La Rochelle, France
| | - Mike Hammill
- Institut Maurice Lamontagne, Fisheries and Oceans Canada, Mont-Joli, Québec, Canada
| | - Garry B Stenson
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Kit M Kovacs
- Fram Centre, Norwegian Polar Institute, Tromsø, Norway
| | | | - Marianna Chimienti
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France
| | - Mathylde Renaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France
| | | | - Tiphaine Jeanniard du Dot
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
3
|
Westbury MV, Brown SC, Lorenzen J, O’Neill S, Scott MB, McCuaig J, Cheung C, Armstrong E, Valdes PJ, Samaniego Castruita JA, Cabrera AA, Blom SK, Dietz R, Sonne C, Louis M, Galatius A, Fordham DA, Ribeiro S, Szpak P, Lorenzen ED. Impact of Holocene environmental change on the evolutionary ecology of an Arctic top predator. SCIENCE ADVANCES 2023; 9:eadf3326. [PMID: 37939193 PMCID: PMC10631739 DOI: 10.1126/sciadv.adf3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modeling, we investigate how Holocene environmental changes affected polar bears around Greenland. We uncover reductions in effective population size coinciding with increases in annual mean sea surface temperature, reduction in sea ice cover, declines in suitable habitat, and shifts in suitable habitat northward. Furthermore, we show that west and east Greenlandic polar bears are morphologically, and ecologically distinct, putatively driven by regional biotic and genetic differences. Together, we provide insights into the vulnerability of polar bears to environmental change and how the Arctic marine ecosystem plays a vital role in shaping the evolutionary and ecological trajectories of its inhabitants.
Collapse
Affiliation(s)
- Michael V. Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stuart C. Brown
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department for Environment and Water, Adelaide, South Australia, Australia
| | - Julie Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stuart O’Neill
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael B. Scott
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Julia McCuaig
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Christina Cheung
- Department of Anthropology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Edward Armstrong
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | | - Andrea A. Cabrera
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stine Keibel Blom
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Rune Dietz
- Arctic Research Centre (ARC), Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Arctic Research Centre (ARC), Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Marie Louis
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk 3900, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Damien A. Fordham
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sofia Ribeiro
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Glaciology and Climate Department, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Paul Szpak
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Eline D. Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| |
Collapse
|
4
|
Grémillet D, Descamps S. Ecological impacts of climate change on Arctic marine megafauna. Trends Ecol Evol 2023:S0169-5347(23)00082-4. [PMID: 37202284 DOI: 10.1016/j.tree.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
Global warming affects the Arctic more than any other region. Mass media constantly relay apocalyptic visions of climate change threatening Arctic wildlife, especially emblematic megafauna such as polar bears, whales, and seabirds. Yet, we are just beginning to understand such ecological impacts on marine megafauna at the scale of the Arctic. This knowledge is geographically and taxonomically biased, with striking deficiencies in the Russian Arctic and strong focus on exploited species such as cod. Beyond a synthesis of scientific advances in the past 5 years, we provide ten key questions to be addressed by future work and outline the requested methodology. This framework builds upon long-term Arctic monitoring inclusive of local communities whilst capitalising on high-tech and big data approaches.
Collapse
Affiliation(s)
- David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Percy FitzPatrick Institute, DST/NRF Excellence Center at the University of Cape Town, Cape Town, South Africa.
| | | |
Collapse
|
5
|
Altobelli JT, Dickinson KJM, Godfrey SS, Bishop PJ. Methods in amphibian biotelemetry: Two decades in review. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph T. Altobelli
- Department of Zoology University of Otago 340 Great King Street, PO Box 56 Dunedin 9054 New Zealand
| | | | - Stephanie S. Godfrey
- Department of Zoology University of Otago 340 Great King Street, PO Box 56 Dunedin 9054 New Zealand
| | - Phillip J. Bishop
- Department of Zoology University of Otago 340 Great King Street, PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
6
|
Chambault P, Kovacs KM, Lydersen C, Shpak O, Teilmann J, Albertsen CM, Heide-Jørgensen MP. Future seasonal changes in habitat for Arctic whales during predicted ocean warming. SCIENCE ADVANCES 2022; 8:eabn2422. [PMID: 35867786 PMCID: PMC9307241 DOI: 10.1126/sciadv.abn2422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/08/2022] [Indexed: 05/31/2023]
Abstract
Ocean warming is causing shifts in the distributions of marine species, but the location of suitable habitats in the future is unknown, especially in remote regions such as the Arctic. Using satellite tracking data from a 28-year-long period, covering all three endemic Arctic cetaceans (227 individuals) in the Atlantic sector of the Arctic, together with climate models under two emission scenarios, species distributions were projected to assess responses of these whales to climate change by the end of the century. While contrasting responses were observed across species and seasons, long-term predictions suggest northward shifts (243 km in summer versus 121 km in winter) in distribution to cope with climate change. Current summer habitats will decline (mean loss: -25%), while some expansion into new winter areas (mean gain: +3%) is likely. However, comparing gains versus losses raises serious concerns about the ability of these polar species to deal with the disappearance of traditional colder habitats.
Collapse
Affiliation(s)
- Philippine Chambault
- Greenland Institute of Natural Resources, Strandgade 91, 2, DK-1401 Copenhagen, Denmark
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | | | - Olga Shpak
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia (Independent scientist, Kharkov, Ukraine)
| | - Jonas Teilmann
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
7
|
Hamilton CD, Lydersen C, Aars J, Acquarone M, Atwood T, Baylis A, Biuw M, Boltunov AN, Born EW, Boveng P, Brown TM, Cameron M, Citta J, Crawford J, Dietz R, Elias J, Ferguson SH, Fisk A, Folkow LP, Frost KJ, Glazov DM, Granquist SM, Gryba R, Harwood L, Haug T, Heide‐Jørgensen MP, Hussey NE, Kalinek J, Laidre KL, Litovka DI, London JM, Loseto LL, MacPhee S, Marcoux M, Matthews CJD, Nilssen K, Nordøy ES, O’Corry‐Crowe G, Øien N, Olsen MT, Quakenbush L, Rosing‐Asvid A, Semenova V, Shelden KEW, Shpak OV, Stenson G, Storrie L, Sveegaard S, Teilmann J, Ugarte F, Von Duyke AL, Watt C, Wiig Ø, Wilson RR, Yurkowski DJ, Kovacs KM. Marine mammal hotspots across the circumpolar Arctic. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts. Sci Rep 2021; 11:22109. [PMID: 34764330 PMCID: PMC8586018 DOI: 10.1038/s41598-021-01404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
In colonially breeding marine predators, individual movements and colonial segregation are influenced by seascape characteristics. Tidewater glacier fronts are important features of the Arctic seascape and are often described as foraging hotspots. Albeit their documented importance for wildlife, little is known about their structuring effect on Arctic predator movements and space use. In this study, we tested the hypothesis that tidewater glacier fronts can influence marine bird foraging patterns and drive spatial segregation among adjacent colonies. We analysed movements of black-legged kittiwakes (Rissa tridactyla) in a glacial fjord by tracking breeding individuals from five colonies. Although breeding kittiwakes were observed to travel up to ca. 280 km from the colony, individuals were more likely to use glacier fronts located closer to their colony and rarely used glacier fronts located farther away than 18 km. Such variation in the use of glacier fronts created fine-scale spatial segregation among the four closest (ca. 7 km distance on average) kittiwake colonies. Overall, our results support the hypothesis that spatially predictable foraging patches like glacier fronts can have strong structuring effects on predator movements and can modulate the magnitude of intercolonial spatial segregation in central-place foragers.
Collapse
|
9
|
van Weelden C, Towers JR, Bosker T. Impacts of climate change on cetacean distribution, habitat and migration. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Boyd C, Punt AE. Shifting trends: Detecting changes in cetacean population dynamics in shifting habitat. PLoS One 2021; 16:e0251522. [PMID: 34014942 PMCID: PMC8136736 DOI: 10.1371/journal.pone.0251522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The ability to monitor population dynamics and detect major changes in population trend is essential for wildlife conservation and management. However, this is often challenging for cetaceans as surveys typically cover only a portion of a population’s range and conventional stock assessment methods cannot then distinguish whether apparent changes in abundance reflect real changes in population size or shifts in distribution. We developed and tested methods for estimating population size and trend and detecting changes in population trend in the context of shifting habitat by integrating additional data into distance-sampling analysis. Previous research has shown that incorporating habitat information can improve population size estimates for highly mobile species with dynamic spatial distributions. Here, using simulated datasets representative of a large whale population, we demonstrate that incorporating individual mark-recapture data can increase the accuracy and precision of trend estimation and the power to distinguish whether apparent changes in abundance reflect changes in population trend or distribution shifts. We recommend that similar simulation studies are conducted for specific cetacean populations to assess the potential for detecting changes in population dynamics given available data. This approach is especially important wherever population change may be confounded with long-term change in distribution patterns associated with regime shifts or climate change.
Collapse
Affiliation(s)
- Charlotte Boyd
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - André E. Punt
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
11
|
Skovrind M, Louis M, Westbury MV, Garilao C, Kaschner K, Castruita JAS, Gopalakrishnan S, Knudsen SW, Haile JS, Dalén L, Meshchersky IG, Shpak OV, Glazov DM, Rozhnov VV, Litovka DI, Krasnova VV, Chernetsky AD, Bel'kovich VM, Lydersen C, Kovacs KM, Heide-Jørgensen MP, Postma L, Ferguson SH, Lorenzen ED. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations. Mol Ecol 2021; 30:2543-2559. [PMID: 33825233 DOI: 10.1111/mec.15915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Several Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well-differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea-shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species-wide haplotype diversity.
Collapse
Affiliation(s)
| | - Marie Louis
- GLOBE Institute, University of Copenhagen, Denmark
| | | | | | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | | - Steen Wilhelm Knudsen
- NIVA Denmark Water Research, Copenhagen, Denmark.,Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - James S Haile
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ilya G Meshchersky
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow, Russia
| | - Olga V Shpak
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow, Russia
| | - Dmitry M Glazov
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow, Russia
| | - Viatcheslav V Rozhnov
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Science, Moscow, Russia
| | - Dennis I Litovka
- Office of Governor and Government of the Chukotka Autonomous Okrug, Anadyr, Russia
| | - Vera V Krasnova
- Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia
| | - Anton D Chernetsky
- Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia
| | | | | | | | - Mads Peter Heide-Jørgensen
- Natural History Museum of Denmark, University of Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Lianne Postma
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
12
|
Nelms SE, Alfaro-Shigueto J, Arnould JPY, Avila IC, Bengtson Nash S, Campbell E, Carter MID, Collins T, Currey RJC, Domit C, Franco-Trecu V, Fuentes MMPB, Gilman E, Harcourt RG, Hines EM, Hoelzel AR, Hooker SK, Johnston DW, Kelkar N, Kiszka JJ, Laidre KL, Mangel JC, Marsh H, Maxwell SM, Onoufriou AB, Palacios DM, Pierce GJ, Ponnampalam LS, Porter LJ, Russell DJF, Stockin KA, Sutaria D, Wambiji N, Weir CR, Wilson B, Godley BJ. Marine mammal conservation: over the horizon. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Marine mammals can play important ecological roles in aquatic ecosystems, and their presence can be key to community structure and function. Consequently, marine mammals are often considered indicators of ecosystem health and flagship species. Yet, historical population declines caused by exploitation, and additional current threats, such as climate change, fisheries bycatch, pollution and maritime development, continue to impact many marine mammal species, and at least 25% are classified as threatened (Critically Endangered, Endangered or Vulnerable) on the IUCN Red List. Conversely, some species have experienced population increases/recoveries in recent decades, reflecting management interventions, and are heralded as conservation successes. To continue these successes and reverse the downward trajectories of at-risk species, it is necessary to evaluate the threats faced by marine mammals and the conservation mechanisms available to address them. Additionally, there is a need to identify evidence-based priorities of both research and conservation needs across a range of settings and taxa. To that effect we: (1) outline the key threats to marine mammals and their impacts, identify the associated knowledge gaps and recommend actions needed; (2) discuss the merits and downfalls of established and emerging conservation mechanisms; (3) outline the application of research and monitoring techniques; and (4) highlight particular taxa/populations that are in urgent need of focus.
Collapse
Affiliation(s)
- SE Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - J Alfaro-Shigueto
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
- Facultad de Biologia Marina, Universidad Cientifica del Sur, Lima, Perú
| | - JPY Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - IC Avila
- Grupo de Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - S Bengtson Nash
- Environmental Futures Research Institute (EFRI), Griffith University, Nathan Campus, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - E Campbell
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - MID Carter
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - T Collins
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, USA
| | - RJC Currey
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | - C Domit
- Laboratory of Ecology and Conservation, Marine Study Center, Universidade Federal do Paraná, Brazil
| | - V Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Uruguay
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - E Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI 96822, USA
| | - RG Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - EM Hines
- Estuary & Ocean Science Center, San Francisco State University, 3150 Paradise Dr. Tiburon, CA 94920, USA
| | - AR Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - SK Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - DW Johnston
- Duke Marine Lab, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - N Kelkar
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, Karnataka, India
| | - JJ Kiszka
- Department of Biological Sciences, Coastlines and Oceans Division, Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - KL Laidre
- Polar Science Center, APL, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - JC Mangel
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - H Marsh
- James Cook University, Townsville, QLD 48111, Australia
| | - SM Maxwell
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - AB Onoufriou
- School of Biology, University of St Andrews, Fife, KY16 8LB, UK
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - DM Palacios
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, 97365, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - GJ Pierce
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas, Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - LS Ponnampalam
- The MareCet Research Organization, 40460 Shah Alam, Malaysia
| | - LJ Porter
- SMRU Hong Kong, University of St. Andrews, Hong Kong
| | - DJF Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - KA Stockin
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - D Sutaria
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - N Wambiji
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa-80100, Kenya
| | - CR Weir
- Ketos Ecology, 4 Compton Road, Kingsbridge, Devon, TQ7 2BP, UK
| | - B Wilson
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - BJ Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| |
Collapse
|
13
|
TEAMwISE: synchronised immersive environments for exploration and analysis of animal behaviour. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
The recent availability of affordable and lightweight tracking sensors allows researchers to collect large and complex movement data sets. To explore and analyse these data, applications are required that are capable of handling the data while providing an environment that enables the analyst(s) to focus on the task of investigating the movement in the context of the geographic environment it occurred in. We present an extensible, open-source framework for collaborative analysis of geospatial–temporal movement data with a use case in collective behaviour analysis. The framework TEAMwISE supports the concurrent usage of several program instances, allowing to have different perspectives on the same data in collocated or remote set-ups. The implementation can be deployed in a variety of immersive environments, for example, on a tiled display wall and mobile VR devices.
Graphic abstract
Collapse
|
14
|
Bengtsson O, Lydersen C, Kovacs KM, Lindström U. Ringed seal (Pusa hispida) diet on the west coast of Spitsbergen, Svalbard, Norway: during a time of ecosystem change. Polar Biol 2020. [DOI: 10.1007/s00300-020-02684-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractGlobal warming is causing Atlantification of water masses and concomitant changes in food webs in the Barents Sea region. To determine whether changes that have been documented at lower trophic levels are impacting the diet of ringed seals (Pusa hispida) gastrointestinal tracts (GITs) from 99 coastal-feeding ringed seals, collected in western Spitsbergen, Svalbard, were analysed via identification of hard-parts. The study animals were shot in spring (n = 30; April–July) or autumn (n = 69; August–October) during four consecutive years (2014–2017). Thirty different prey types were identified, but most seals (55.6%) had consumed between 2 and 4 different types of prey. Polar cod (Boreogadus saida) dominated the diet of the ringed seals in terms of relative biomass (Bi = 60.0%) and frequency of occurrence (FOi = 86.9%), followed by pricklebacks (Stichaeidae; Bi = 23.4%; FOi = 79.8%). Redundancy analysis (RDA) revealed that year was the only significant predictor explaining variance in autumn diet composition (RDA, F3 = 4.96, AIC = − 76.49, p ≤ 0.0050; blubber content and maturity/sex group were not significant). Blue whiting (Micromesistius poutassou) occurred in the diet in small quantities; this Atlantic fish species has not previously been documented in the ringed seals’ diet. Atlantic cod (Gadus morhua) had the highest Bi (9.2%) among Atlantic prey types. However, despite major changes in the last decade in the fish and zooplankton community in western Svalbard, and consumption of a few Atlantic prey types, the ringed seals’ diet in Svalbard continues to be dominated by Arctic prey, especially polar cod.
Collapse
|
15
|
Vacquié-Garcia J, Lydersen C, Marques TA, Andersen M, Kovacs KM. First abundance estimate for white whales Delphinapterus leucas in Svalbard, Norway. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Svalbard Archipelago (Norway) is experiencing rapid declines in the seasonal duration and extent of sea-ice cover, and local tidewater glaciers are melting. These environmental changes represent a threat to ice-associated species in the region, including white whales Delphinapterus leucas. However, no estimates of stock size or trends are available for this stock. An aerial survey was conducted during the summer of 2018, covering the coastlines of all major islands in Svalbard, as well fjords and open ocean areas. A total count was attempted for the coastlines, while coverage of the fjords and open ocean areas was designed as distance-sampling line transects. In total, 265 white whales were detected in 22 groups along the 4965 km of coastline coverage. No whales were observed on fjord (1481 km) or open ocean transects (535 km). After correcting for surface availability using behavioural data from the same area (in summer) and making adjustments for small areas not flown during the survey, the stock size was estimated to be 549 individuals (95% CI: 436%%CONV_ERR%%723). This estimate is surprisingly low given that this species is one of the most frequently observed cetaceans in the area, but it confirms suspicions based on difficulties in finding animals when operating white whale tagging programmes over the past decade. This first population estimate is important in the context of the rapid environmental change taking place in the Arctic and for providing a baseline for comparison with future estimates.
Collapse
Affiliation(s)
| | - C Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - TA Marques
- Centre for Research into Ecological & Environmental Modelling (Scottish Oceans Institute), Buchanan Gardens, St Andrews, KY16 9LY, UK
- Departamento de Biologia Animal, Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M Andersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - KM Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
16
|
Hamilton CD, Vacquié-Garcia J, Kovacs KM, Ims RA, Kohler J, Lydersen C. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol Lett 2019; 15:20180834. [PMID: 30836888 DOI: 10.1098/rsbl.2018.0834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida) and white whales (WW; Delphinapterus leucas) from Svalbard, Norway, spanning two decades (1995-2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.
Collapse
Affiliation(s)
| | | | - Kit M Kovacs
- 1 Norwegian Polar Institute, Fram Centre , Tromsø , Norway
| | - Rolf A Ims
- 2 University of Tromsø, The Arctic University of Norway , Tromsø , Norway
| | - Jack Kohler
- 1 Norwegian Polar Institute, Fram Centre , Tromsø , Norway
| | | |
Collapse
|