1
|
Ferreira VHB, Seressia J, Même N, Bernard J, Pinard-van der Laan MH, Calenge F, Lecoeur A, Hedlund L, Jensen P, Guesdon V, Calandreau L. Early and late cognitive and behavioral aspects associated with range use in free-range laying hens (Gallus gallus domesticus). Poult Sci 2024; 103:103813. [PMID: 38759569 PMCID: PMC11107457 DOI: 10.1016/j.psj.2024.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
Individual differences in free-range chicken systems are important factors influencing how birds use the range (or not), even if individuals are reared in the same environmental conditions. Here, we investigated how various aspects of the birds' behavioral and cognitive tendencies, including their optimism/pessimism, cognitive flexibility, sociability, and exploration levels, are associated with range use and how they may change over time (before and after range access). To achieve this, 100 White Leghorn laying hen chicks underwent three distinct behavioral/cognitive tests-the cognitive bias test, the detour test, and the multivariate test-prior to gaining access to the range, between 9 and 39 days of age. After range access was allowed (from day 71), birds' range use was evaluated over 7 nonconsecutive days (from 74-91 days of age). Subsequently, a subset of birds, classified as high rangers (n = 15) and low rangers (n = 15) based on their range use, underwent retesting on the same three previous tests between 94 and 108 days of age. Our results unveiled a negative correlation trend between birds' evaluation of the ambiguous cue and their subsequent range use (rho = -0.19, p = 0.07). Furthermore, low rangers were faster to learn the detour task (χ2 = 7.34, df = 1, p = 0.006), coupled with increased sociability during the multivariate test (rho = -0.23, p = 0.02), contrasting with their high-ranging counterparts, who displayed more exploratory behaviors (F[1,27] = 3.64, p = 0.06). These behavioral patterns fluctuated over time (before and after range access); however, conclusively attributing these changes to birds' aging and development or the access to the range remains challenging. Overall, our results corroborate that behavioral and cognitive individual differences may be linked to range use and offer novel perspectives on the early behavioral and cognitive traits that may be linked to range use. These findings may serve as a foundation for adapting environments to meet individual needs and improve animal welfare in the future.
Collapse
Affiliation(s)
| | - Jeanne Seressia
- CNRS, IFCE, INRAE, UMR PRC, Université de Tours, Nouzilly, France
| | | | | | | | - Fanny Calenge
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Lecoeur
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louise Hedlund
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | |
Collapse
|
2
|
Baxter M, O'Connell NE. Large variation in the movement of individual broiler chickens tracked in a commercial house using ultra-wideband backpacks. Sci Rep 2023; 13:7634. [PMID: 37169813 PMCID: PMC10175278 DOI: 10.1038/s41598-023-34149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Our understanding of the movement patterns of individual broiler chickens in large flocks is extremely limited. Here we report the use of a Real Time Locating System to track individual broilers in a house of 28 000 birds. Broilers were fitted with backpacks containing ultra-wideband tags on day 21 (N = 8 broilers) or day 24 (N = 9 broilers), with tags recording positioning and distance data until Day 38. Tagged birds were penned overnight on Day 31 to avoid 'thinning'. We found no clear evidence of broilers consistently creating similar sized "home ranges". Some broilers spent most time < 10 m from where they were originally found while others visited at least 90% of the house in the period before thinning. While some broilers rapidly returned to the area they were collected from at thinning, the majority did not. Movement data suggested that broilers that restricted themselves to smaller areas of the house were not necessarily less active. Although there was an average reduction in movement with age, this was not linear and there was individual variation. There was also no clear association between movement patterns and broiler weight or gait score, suggesting a more complicated relationship between activity, ranging and some welfare measures.
Collapse
Affiliation(s)
- Mary Baxter
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Niamh E O'Connell
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom.
| |
Collapse
|
3
|
Urhan U, Mårdberg M, Isaksson E, van Oers K, Brodin A. Blue tits are outperformed by great tits in a test of motor inhibition, and experience does not improve their performance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221176. [PMID: 36844809 PMCID: PMC9943873 DOI: 10.1098/rsos.221176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Motor inhibition refers to the ability to inhibit immediate responses in favour of adaptive actions that are mediated by executive functions. This ability may be an indication of general cognitive ability in animals and is important for advanced cognitive functions. In this study, our aim was to compare motor inhibition ability of two closely related passerines that share the same habitat. To do this, we tested motor inhibition ability using a transparent cylinder task in blue tits in the same way as we previously tested great tits. To test whether the experience of transparent objects would affect the performance of these species differently, both in the present experiment using blue tits and our previous one on great tits, we divided 33 wild-caught individuals into three different treatment groups with 11 birds each. Before the test we allowed one group to experience a transparent cylindrical object, one group to experience a transparent wall and a third group was kept naive. In general, blue tits performed worse than great tits, and unlike the great tits, they did not improve their performance after experience with a transparent cylinder-like object. The performance difference may stem from difference in foraging behaviour between these species.
Collapse
Affiliation(s)
- Utku Urhan
- Department of Biology, Lund University, Lund, Sweden
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | - Emil Isaksson
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Kees van Oers
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Anders Brodin
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Georgelin M, Ferreira VHB, Cornilleau F, Meurisse M, Poissenot K, Beltramo M, Keller M, Lansade L, Dardente H, Calandreau L. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci Rep 2023; 13:951. [PMID: 36653419 PMCID: PMC9849226 DOI: 10.1038/s41598-023-28248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Collapse
Affiliation(s)
- Marion Georgelin
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Kévin Poissenot
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Massimiliano Beltramo
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
5
|
Ferreira VHB, Simoni A, Germain K, Leterrier C, Lansade L, Collin A, Mignon-Grasteau S, Le Bihan-Duval E, Guettier E, Leruste H, Løvlie H, Calandreau L, Guesdon V. Foraging Behavior Shows Individual-Consistency Over Time, and Predicts Range Use in Slow-Growing Free-Range Male Broiler Chickens. Front Vet Sci 2022; 9:814054. [PMID: 35198623 PMCID: PMC8858978 DOI: 10.3389/fvets.2022.814054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research on free-range chickens shows that individual behavioral differences may link to range use. However, most of these studies explored individual behavioral differences only at one time point or during a short time window, assessed differences when animals were out of their social group and home environment (barn and range), and in specific tests or situations. Therefore, it is yet unclear how different behaviors relate to range use and how consistent these behaviors are at the individual level. To fill this gap, we here aimed to describe the behavioral budget of slow-growing male broiler chickens (S757N) when in their social group and home environment during the whole rearing period (from the second week of life to the twelfth week, before slaughter), and to relate observed behavioral differences to range use. For this, we followed a sample of individuals in two flocks (n = 60 focal chickens out of 200 chickens per flock), over two seasons, during three periods: before range access (from 14 to 25 days old), during early range access (first weeks of range access, from 37 to 53 days old), and during late range access (last weeks of range access, from 63 to 87 days old). By the end of each period, individual tests of exploration and social motivation were also performed, measuring exploration/activity and sociability propensities. Our results show that foraging (i.e., pecking and scratching at the ground) was the only behavior that correlated to range use for all three rearing periods, independent of the season. Foraging was also the only behavior that showed within-individual consistency from an early age and across the three rearing periods. Foraging may, therefore, serve as a useful behavioral predictor of range use in free-range broiler chickens. Our study increases the knowledge of how behaviors develop and relate to each other in a domesticated and intensely selected species, and improves our understanding of the biology of free-range broiler chickens. These findings can, ultimately, serve as a foundation to increase range use and improve chicken welfare.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
- Vitor Hugo Bessa Ferreira
| | - Arthur Simoni
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | | - Christine Leterrier
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Léa Lansade
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, France
| | | | | | | | - Hélène Leruste
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
- *Correspondence: Vanessa Guesdon
| |
Collapse
|
6
|
Wascher CAF, Allen K, Szipl G. Learning and motor inhibitory control in crows and domestic chickens. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210504. [PMID: 34703616 PMCID: PMC8527213 DOI: 10.1098/rsos.210504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Cognitive abilities allow animals to navigate through complex, fluctuating environments. In the present study, we tested the performance of a captive group of eight crows, Corvus corone and 10 domestic chickens, Gallus gallus domesticus, in the cylinder task, as a test of motor inhibitory control and reversal learning as a measure of learning ability and behavioural flexibility. Four crows and nine chickens completed the cylinder task, eight crows and six chickens completed the reversal learning experiment. Crows performed better in the cylinder task compared with chickens. In the reversal learning experiment, species did not significantly differ in the number of trials until the learning criterion was reached. The performance in the reversal learning experiment did not correlate with performance in the cylinder task in chickens. Our results suggest crows to possess better motor inhibitory control compared with chickens. By contrast, learning performance in a reversal learning task did not differ between the species, indicating similar levels of behavioural flexibility. Interestingly, we describe notable individual differences in performance. We stress the importance not only to compare cognitive performance between species but also between individuals of the same species when investigating the evolution of cognitive skills.
Collapse
Affiliation(s)
- Claudia A. F. Wascher
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Chelmsford, UK
| | - Katie Allen
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Chelmsford, UK
| | - Georgine Szipl
- Konrad Lorenz Forschungsstelle, Core facility, University of Vienna, Gruenau, Austria
| |
Collapse
|
7
|
Campbell DL, Whitten JM, Slater E, Lee C. Rearing enrichments differentially modified hen personality traits and reduced prediction of range use. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Ferreira VHB, Guesdon V, Calandreau L. How can the research on chicken cognition improve chicken welfare: a perspective review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1924920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- V. H. B. Ferreira
- JUNIA, Comportement Animal et Systèmes d’Elevage, Lille Cedex, France
| | - V. Guesdon
- JUNIA, Comportement Animal et Systèmes d’Elevage, Lille Cedex, France
| | - L. Calandreau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
9
|
Farrar BG, Voudouris K, Clayton NS. Replications, Comparisons, Sampling and the Problem of Representativeness in Animal Cognition Research. ANIMAL BEHAVIOR AND COGNITION 2021; 8:273-295. [PMID: 34046521 PMCID: PMC7610843 DOI: 10.26451/abc.08.02.14.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animal cognition research often involves small and idiosyncratic samples. This can constrain the generalizability and replicability of a study's results and prevent meaningful comparisons between samples. However, there is little consensus about what makes a strong replication or comparison in animal research. We apply a resampling definition of replication to answer these questions in Part 1 of this article, and, in Part 2, we focus on the problem of representativeness in animal research. Through a case study and a simulation study, we highlight how and when representativeness may be an issue in animal behavior and cognition research and show how the representativeness problems can be viewed through the lenses of, i) replicability, ii) generalizability and external validity, iii) pseudoreplication and, iv) theory testing. Next, we discuss when and how researchers can improve their ability to learn from small sample research through, i) increasing heterogeneity in experimental design, ii) increasing homogeneity in experimental design, and, iii) statistically modeling variation. Finally, we describe how the strongest solutions will vary depending on the goals and resources of individual research programs and discuss some barriers towards implementing them.
Collapse
|
10
|
Training level reveals a dynamic dialogue between stress and memory systems in birds. Behav Brain Res 2021; 408:113280. [PMID: 33819534 DOI: 10.1016/j.bbr.2021.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
Chronic stress profoundly affects forms of declarative memory, such as spatial memory, while it may spare non-declarative memory, such as cue-based memory. It is known, however, that the effects of chronic stress on memory systems may vary according to the level of training of an individual was submitted. Here, we investigated, in birds, how chronic stress impact spatial and cue-based memories according to training level. For that, control and chronically stressed Japanese quail were trained in a task that could be solved using spatial and cue-based memory and tested for their memory performance after 5 and 15 training days (initial training and overtraining, respectively) and following an emotional challenge (exposure to an open field). Our results showed that, compared to control quail, chronic stress impacted negatively spatial memory performances in stressed birds after initial training, but these differences were lowered after overtraining. Control birds seemed to shift from spatial to cue-based memory to solve the task across overtraining. However, an emotional challenge before testing reinstated the negative impact of chronic stress on spatial memory performances between the groups, revealing that chronic stress/overtraining did not eliminate the spatial memory and differences caused by stressors can reemerge depending on the individual's immediate psychological state. Contrary to spatial memory, cue-based memory was not affected in chronically stressed birds compared to control birds in any test occasion, confirming its resistance against the negative effects of chronic stress. Altogether these findings reveal a dynamic dialogue between stress, training level, and memory systems in birds.
Collapse
|
11
|
Ferreira VHB, Simoni A, Germain K, Leterrier C, Lansade L, Collin A, Mignon-Grasteau S, Le Bihan-Duval E, Guettier E, Leruste H, Calandreau L, Guesdon V. Working for food is related to range use in free-range broiler chickens. Sci Rep 2021; 11:6253. [PMID: 33737689 PMCID: PMC7973526 DOI: 10.1038/s41598-021-85867-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/02/2022] Open
Abstract
When animals prefer to make efforts to obtain food instead of acquiring it from freely available sources, they exhibit what is called contrafreeloading. Recently, individual differences in behavior, such as exploration, were shown to be linked to how prone an individual may be to contrafreeload. In this work, our main objective was to test whether and how individual differences in range use of free-range broiler chickens (Gallus gallus domesticus) were related to the individual motivation to contrafreeload. We also verified whether other behavioral variations could relate to range use. To that aim, over three different periods (before range access, first weeks of range access, and last weeks of range access), chickens with different ranging levels (low and high rangers) were submitted to a contrafreeloading test and had different behaviors recorded (such as foraging, resting, locomotion) in their home environment. During the contrafreeloading test, chickens were conditioned to one chamber presenting a foraging substrate and mealworms, while in the other chamber, mealworms were freely available on the floor. During testing trials, chickens had access to both empty chambers, and the time spent in each chamber was quantified. On average, low rangers preferred the chamber where mealworms were easily accessible (without the foraging substrate), while high rangers preferred the chamber where mealworms were accessible with difficulty, showing greater contrafreeloading. Out of ten behaviors recorded in chickens' home environment, foraging was the only one that differed significantly between our two ranging groups, with low rangers foraging, on average, significantly less than high rangers. These results corroborate previous experiences suggesting that range use is probably linked to chickens' exploratory trait and suggest that individual differences in free-range broiler chickens are present even before range access. Increasing our knowledge of individual particularities is a necessary step to improve free-range chicken welfare on the farm.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- JUNIA ISA, Comportement Animal et Systèmes d'Elevage, 48 Boulevard Vauban, BP 41290, 59046, Lille Cedex, France. .,INRAE, CNRS, IFCE, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Université de Tours, 37380, Nouzilly, France.
| | - Arthur Simoni
- JUNIA ISA, Comportement Animal et Systèmes d'Elevage, 48 Boulevard Vauban, BP 41290, 59046, Lille Cedex, France
| | - Karine Germain
- INRAE, UE EASM, Le Magneraud, CS 40052, 17700, Surgères, France
| | - Christine Leterrier
- INRAE, CNRS, IFCE, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Université de Tours, 37380, Nouzilly, France
| | - Léa Lansade
- INRAE, CNRS, IFCE, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Université de Tours, 37380, Nouzilly, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | | | | - Hélène Leruste
- JUNIA ISA, Comportement Animal et Systèmes d'Elevage, 48 Boulevard Vauban, BP 41290, 59046, Lille Cedex, France
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Université de Tours, 37380, Nouzilly, France.
| | - Vanessa Guesdon
- JUNIA ISA, Comportement Animal et Systèmes d'Elevage, 48 Boulevard Vauban, BP 41290, 59046, Lille Cedex, France
| |
Collapse
|
12
|
Armstrong EA, Voelkl B, Voegeli S, Gebhardt-Henrich SG, Guy JH, Sandilands V, Boswell T, Toscano MJ, Smulders TV. Cell Proliferation in the Adult Chicken Hippocampus Correlates With Individual Differences in Time Spent in Outdoor Areas and Tonic Immobility. Front Vet Sci 2020; 7:587. [PMID: 33005647 PMCID: PMC7479223 DOI: 10.3389/fvets.2020.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Access to outdoor areas is provided as a means of enhancing welfare in commercial systems for laying hens (Gallus gallus domesticus), but substantial individual differences exist in their proportional use. Baseline cell proliferation levels of Adult Hippocampal Neurogenesis (AHN) have been associated with individual differences in reactive vs. proactive coping style, and in both mammals and birds, AHN is upregulated by positive experiences including environmental enrichment and exercise. We thus sought to explore whether individual differences in use of outdoor areas and in tonic immobility responses (indicative of fearfulness) were associated with hippocampal cell proliferation and neuronal differentiation. Radio frequency identification technology was used to track the ranging behavior of 440 individual focal hens within a commercially-relevant system over a 72-days period, after which tonic immobility durations were measured. Following hippocampal tissue collection from 58 focal hens, proliferation and neuronal differentiation were measured through quantitative PCR for proliferating cell nuclear antigen (PCNA) and doublecortin mRNA, respectively. Individual differences in tonic immobility duration positively correlated with PCNA expression over the whole hippocampal formation, while greater time spent in outdoor areas (the grassy range and stone yard) was associated with higher proliferation in the rostral subregion. Basal proliferation in the chicken hippocampal formation may thus relate to reactivity, while levels in the rostral region may be stimulated by ranging experience. Doublecortin expression in the caudal hippocampus negatively co-varied with time on the grassy range, but was not associated with tonic immobility duration. This suggests that ranging outside may be associated with stress. Within laying hen flocks, individual differences in hippocampal plasticity thus relate to coping style and use of external areas.
Collapse
Affiliation(s)
- Elena A Armstrong
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernhard Voelkl
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Sabine Voegeli
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | | | - Jonathan H Guy
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Sandilands
- Department of Agriculture, Horticulture, and Engineering Science, SRUC, Edinburgh, United Kingdom
| | - Tim Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael J Toscano
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Tom V Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Lormant F, Ferreira VHB, Meurisse M, Lemarchand J, Constantin P, Morisse M, Cornilleau F, Parias C, Chaillou E, Bertin A, Lansade L, Leterrier C, Lévy F, Calandreau L. Emotionality modulates the impact of chronic stress on memory and neurogenesis in birds. Sci Rep 2020; 10:14620. [PMID: 32884096 PMCID: PMC7471904 DOI: 10.1038/s41598-020-71680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.
Collapse
Affiliation(s)
- Flore Lormant
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France.,Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046, Lille Cedex, France
| | - Maryse Meurisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Julie Lemarchand
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Paul Constantin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Mélody Morisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Fabien Cornilleau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Aline Bertin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Léa Lansade
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Christine Leterrier
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Frédéric Lévy
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Ludovic Calandreau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France. .,CNRS, UMR 7247, 37380, Nouzilly, France. .,Université François Rabelais, 37041, Tours, France. .,IFCE, 37380, Nouzilly, France.
| |
Collapse
|
14
|
Range use is related to free-range broiler chickens’ behavioral responses during food and social conditioned place preference tests. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Social motivation and the use of distal, but not local, featural cues are related to ranging behavior in free-range chickens (Gallus gallus domesticus). Anim Cogn 2020; 23:769-780. [DOI: 10.1007/s10071-020-01389-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/29/2022]
|
16
|
Ferreira VHB, Reiter L, Germain K, Calandreau L, Guesdon V. Uninhibited chickens: ranging behaviour impacts motor self-regulation in free-range broiler chickens ( Gallus gallus domesticus). Biol Lett 2020; 16:20190721. [PMID: 31964255 DOI: 10.1098/rsbl.2019.0721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibiting impulsive, less flexible behaviours is of utmost importance for individual adaptation in an ever-changing environment. However, problem-solving tasks may be greatly impacted by individual differences in behaviour, since animals with distinct behavioural types perceive and interact with their environment differently, resulting in variable responses to the same stimuli. Here, we tested whether and how differences in ranging behaviour of free-range chickens affect motor self-regulation performance during a cylinder task. For this task, subjects must refrain from trying to reach a food reward through the walls of a transparent cylinder and detour to its open sides, as a sign of inhibition. Free-range chickens exhibited an overall low performance in the motor self-regulation task (31.33 ± 13.55% of correct responses), however, high rangers showed significantly poorer performance than the low rangers (23.75 ± 9.16% versus 40 ± 12.90%, respectively). These results give further support to the impacts of individual behavioural differences on cognitive performances. This is the first demonstration to our knowledge of a relationship between exploratory tendencies and motor self-regulation for an avian species.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046 Lille Cedex, France.,INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Lorène Reiter
- INRAE, UE EASM, Le Magneraud, CS 40052, 17700 Surgères, France
| | - Karine Germain
- INRAE, UE EASM, Le Magneraud, CS 40052, 17700 Surgères, France
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Vanessa Guesdon
- Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046 Lille Cedex, France
| |
Collapse
|