1
|
Koger B, Deshpande A, Kerby JT, Graving JM, Costelloe BR, Couzin ID. Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision. J Anim Ecol 2023. [PMID: 36945122 DOI: 10.1111/1365-2656.13904] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals' social and physical environments. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age-sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.
Collapse
Affiliation(s)
- Benjamin Koger
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Adwait Deshpande
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jeffrey T Kerby
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Neukom Institute for Computational Science, Dartmouth College, Hanover, New Hampshire, USA
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jacob M Graving
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Advanced Research Technology Unit, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Blair R Costelloe
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Smolinský R, Hiadlovská Z, Maršala Š, Škrabánek P, Škrobánek M, Martínková N. High predation risk decimates survival during the reproduction season. Ecol Evol 2022; 12:e9407. [PMID: 36262266 PMCID: PMC9576000 DOI: 10.1002/ece3.9407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Predators attack conspicuous prey phenotypes that are present in the environment. Male display behavior of conspicuous nuptial coloration becomes risky in the presence of a predator, and adult males face higher predation risk. High predation risk in one sex will lead to low survival and sex ratio bias in adult cohorts, unless the increased predation risk is compensated by higher escape rate.Here, we tested the hypothesis that sand lizards (Lacerta agilis) have sex-specific predation risk and escape rate. We expected the differences to manifest in changes in sex ratio with age, differences in frequency of tail autotomy, and in sex-specific survival rate.We developed a statistical model to estimate predation risk and escape rate, combining the observed sex ratio and frequency of tail autotomy with likelihood-based survival rate. Using Bayesian framework, we estimated the model parameters. We projected the date of the tail autotomy events from growth rates derived from capture-recapture data measurements.We found statistically stable sex ratio in age groups, equal frequency of tail regenerates between sexes, and similar survival rate. Predation risk is similar between sexes, and escape rate increases survival by about 5%. We found low survival rate and a low number of tail autotomy events in females during months when sand lizards mate and lay eggs, indicating high predator pressure throughout reproduction. Our data show that gravid females fail to escape predation.The risks of reproduction season in an ectotherm are a convolution of morphological changes (conspicuous coloration in males and body allometry changes in gravid females), behavior (nuptial displays), and environmental conditions which challenge lizard thermal performance. Performance of endotherm predators in cold spring months endangers gravid females more than displaying males in bright nuptial coloration.
Collapse
Affiliation(s)
- Radovan Smolinský
- Department of Biology, Faculty of EducationMasaryk UniversityBrnoCzech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Štěpán Maršala
- Institute of Automation and Computer ScienceBrno University of TechnologyBrnoCzech Republic
| | - Pavel Škrabánek
- Institute of Automation and Computer ScienceBrno University of TechnologyBrnoCzech Republic
| | - Michal Škrobánek
- Department of Biology, Faculty of EducationMasaryk UniversityBrnoCzech Republic
| | - Natália Martínková
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|