1
|
Freeland LV, Emmerson MG, Vasas V, Gomes J, Versace E. Assessing preferences for adult versus juvenile features in young animals: Newly hatched chicks spontaneously approach red and large stimuli. Learn Behav 2024:10.3758/s13420-024-00638-z. [PMID: 39150659 DOI: 10.3758/s13420-024-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Young precocial birds benefit from staying close to both their mother and their siblings, while prioritising adults, which provide better care. Which features of the stimuli are used by young birds to prioritise approach and eventually attachment to adults over siblings is unknown. We started to address this question in newly hatched domestic chicks (Gallus gallus), focusing on their spontaneous preferences for visual features that systematically vary between adult and juvenile chickens, and that had previously been identified as attractive: size (larger in adults than in juveniles) and colour (darker and redder in adults than in juveniles). Overall, chicks at their first visual experience, that had never seen a conspecific beforehand, were most attracted to the red and large stimuli (two adult features) and spent more time in close proximity with red stimuli than with yellow stimuli. When tested with red large versus small objects (Exp. 1), chicks preferred the large shape. When tested with yellow large and small objects (Exp. 2), chicks did not show a preference. Chicks had a stronger preference for large red stimuli (vs. small yellow objects) than for small red stimuli (vs. a large yellow object) (Exp. 3). These results suggest that the combination of size and colour form the predisposition that helps chicks to spontaneously discriminate between adult and juvenile features from the first stages of life, in the absence of previous experience, exhibiting a preference to approach stimuli with features associated with the presence of adult conspecifics.
Collapse
Affiliation(s)
- Laura V Freeland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michael G Emmerson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Vera Vasas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Josephine Gomes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Wang S, Vasas V, Freeland L, Osorio D, Versace E. Spontaneous biases enhance generalization in the neonate brain. iScience 2024; 27:110195. [PMID: 38989452 PMCID: PMC11233965 DOI: 10.1016/j.isci.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Inductive generalization is adaptive in novel contexts for both biological and artificial intelligence. Spontaneous generalization in inexperienced animals raises questions on whether predispositions (evolutionarily acquired biases, or priors) enable generalization from sparse data, without reinforcement. We exposed neonate chicks to an artificial social partner of a specific color, and then looked at generalization on the red-yellow or blue-green ranges. Generalization was inconsistent with an unbiased model. Biases included asymmetrical generalization gradients, some preferences for unfamiliar stimuli, different speed of learning, faster learning for colors infrequent in the natural spectrum. Generalization was consistent with a Bayesian model that incorporates predispositions as initial preferences and treats the learning process as an update of predispositions. Newborn chicks are evolutionarily prepared for generalization, via biases independent from experience, reinforcement, or supervision. To solve the problem of induction, biological and artificial intelligence can use biases tuned to infrequent stimuli, such as the red and blue colors.
Collapse
Affiliation(s)
- Shuge Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Vera Vasas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Laura Freeland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Phan MH, Jörges B, Harris LR, Kingdom FAA. A visual bias for falling objects. Perception 2024; 53:197-207. [PMID: 38304970 PMCID: PMC10858620 DOI: 10.1177/03010066241228681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Aristotle believed that objects fell at a constant velocity. However, Galileo Galilei showed that when an object falls, gravity causes it to accelerate. Regardless, Aristotle's claim raises the possibility that people's visual perception of falling motion might be biased away from acceleration towards constant velocity. We tested this idea by requiring participants to judge whether a ball moving in a simulated naturalistic setting appeared to accelerate or decelerate as a function of its motion direction and the amount of acceleration/deceleration. We found that the point of subjective constant velocity (PSCV) differed between up and down but not between left and right motion directions. The PSCV difference between up and down indicated that more acceleration was needed for a downward-falling object to appear at constant velocity than for an upward "falling" object. We found no significant differences in sensitivity to acceleration for the different motion directions. Generalized linear mixed modeling determined that participants relied predominantly on acceleration when making these judgments. Our results support the idea that Aristotle's belief may in part be due to a bias that reduces the perceived magnitude of acceleration for falling objects, a bias not revealed in previous studies of the perception of visual motion.
Collapse
|
4
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
5
|
Han Y, Han W, Li L, Zhang T, Wang Y. Identifying critical kinematic features of animate motion and contribution to animacy perception. iScience 2023; 26:107658. [PMID: 37664633 PMCID: PMC10472316 DOI: 10.1016/j.isci.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Humans can distinguish flying birds from drones based solely on motion features when no image information is available. However, it remains unclear which motion features of animate motion induce our animacy perception. To address this, we first analyzed the differences in centroid motion between birds and drones, and discovered that birds exhibit greater acceleration, angular speed, and trajectory fluctuations. We further determined the order of their importance in evoking animacy perception was trajectory fluctuations, acceleration, and speed. More interestingly, people judge whether a moving object is alive using a feature-matching strategy, implying that animacy perception is induced in a key feature-triggered way rather than relying on the accumulation of evidence. Our findings not only shed light on the critical motion features that induce animacy perception and their relative contributions but also have important implications for developing target classification algorithms based on motion features.
Collapse
Affiliation(s)
- Yifei Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Wenhao Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Buenhombre J, Daza-Cardona EA, Lezama-García K, Olmos-Hernández A, Verduzco-Mendoza A, Bienboire-Frosini C. Parental behavior and newborn attachment in birds: life history traits and endocrine responses. Front Psychol 2023; 14:1183554. [PMID: 37599744 PMCID: PMC10434784 DOI: 10.3389/fpsyg.2023.1183554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
In birds, parental care and attachment period differ widely depending on the species (altricial or precocial), developmental strategies, and life history traits. In most bird species, parental care can be provided by both female and male individuals and includes specific stages such as nesting, laying, and hatching. During said periods, a series of neuroendocrine responses are triggered to motivate parental care and attachment. These behaviors are vital for offspring survival, development, social bonding, intergenerational learning, reproductive success, and ultimately, the overall fitness and evolution of bird populations in a variety of environments. Thus, this review aims to describe and analyze the behavioral and endocrine systems of parental care and newborn attachment in birds during each stage of the post-hatching period.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Jhon Buenhombre
- Faculty of Veterinary Medicine, Antonio Nariño University, Bogotá, Colombia
| | | | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| |
Collapse
|