1
|
Kumar M, Kumar A, Tripathi V, Prabhat A, Bhardwaj SK. Dimly illuminated nights alter behavior and negatively affect fat metabolism in adult male zebra finches. Photochem Photobiol Sci 2024; 23:2201-2210. [PMID: 39546189 DOI: 10.1007/s43630-024-00659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
This experiment investigated the effects of an ecologically relevant level of dim light at night (dLAN) on behavior, physiology and fat metabolism associated gene expressions in central and peripheral tissues of adult male zebra finches that were hatched and raised in 12:12 h LD cycle (Ev, day = 150 ± 5 lx; Ev, night = 0 lx) at 22 ± 2 °C temperature. Half of the birds (n = 8) were maintained on LD cycle and temperature, as before (control), to the other half of birds the 12 h dark period was dimly illuminated at ~ 5 lx (dim light at night, dLAN; Ev, day = 150 ± 5 lx; Ev, night = ~ 5 lx) for 6 weeks. The exposure to dLAN altered the 24 h activity and feeding patterns with enhanced activity and feeding at night. Birds under dLAN fattened and gained weight, and had higher night glucose levels. Concurrently, a negative effect of dLAN was found on mRNA expression of ppar-alpha and cd36 genes involved in the fat metabolism in the hypothalamus, intestine, liver and muscle. These results suggest a more global effect of dLAN exposure on obesity and perhaps long-term health risks due to obesity-related complications to diurnal animals including humans inhabiting an urbanized environment.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Ashwani Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Vatsala Tripathi
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Abhilash Prabhat
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
- Department of Physiology, University of Kentucky, Lexington, KY, 40506, USA
| | | |
Collapse
|
2
|
Filippini T, Costanzini S, Chiari A, Urbano T, Despini F, Tondelli M, Bedin R, Zamboni G, Teggi S, Vinceti M. Light at night exposure and risk of dementia conversion from mild cognitive impairment in a Northern Italy population. Int J Health Geogr 2024; 23:25. [PMID: 39580439 PMCID: PMC11585219 DOI: 10.1186/s12942-024-00384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND A few studies have suggested that light at night (LAN) exposure, i.e. lighting during night hours, may increase dementia risk. We evaluated such association in a cohort of subjects diagnosed with mild cognitive impairment (MCI). METHODS We recruited study participants between 2008 and 2014 at the Cognitive Neurology Clinic of Modena Hospital, Northern Italy and followed them for conversion to dementia up to 2021. We collected their residential history and we assessed outdoor artificial LAN exposure at subjects' residences using satellite imagery data available from the Visible Infrared Imaging Radiometer Suite (VIIRS) for the period 2014-2022. We assessed the relation between LAN exposure and cerebrospinal fluid biomarkers. We used a Cox-proportional hazards model to compute the hazard ratio (HR) of dementia with 95% confidence interval (CI) according to increasing LAN exposure through linear, categorical, and non-linear restricted-cubic spline models, adjusting by relevant confounders. RESULTS Out of 53 recruited subjects, 34 converted to dementia of any type and 26 converted to Alzheimer's dementia. Higher levels of LAN were positively associated with biomarkers of tau pathology, as well as with lower concentrations of amyloid β1-42 assessed at baseline. LAN exposure was positively associated with dementia conversion using linear regression model (HR 1.04, 95% CI 1.01-1.07 for 1-unit increase). Using as reference the lowest tertile, subjects at both intermediate and highest tertiles of LAN exposure showed increased risk of dementia conversion (HRs 2.53, 95% CI 0.99-6.50, and 3.61, 95% CI 1.34-9.74). In spline regression analysis, the risk linearly increased for conversion to both any dementia and Alzheimer's dementia above 30 nW/cm2/sr of LAN exposure. Adding potential confounders including traffic-related particulate matter, smoking status, chronic diseases, and apolipoprotein E status to the multivariable model, or removing cases with dementia onset within the first year of follow-up did not substantially alter the results. CONCLUSION Our findings suggest that outdoor artificial LAN may increase dementia conversion, especially above 30 nW/cm2/sr, although the limited sample size suggests caution in the interpretation of the results, to be confirmed in larger investigations.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.
- School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Sofia Costanzini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, University Hospital of Modena, Modena, Italy
| | - Teresa Urbano
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Francesca Despini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Bedin
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Teggi
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Kamiński M, Chyb A, Matson KD, Minias P. Constitutive innate immune defenses in relation to urbanization and population density in an urban bird, the feral pigeon Columba livia domestica. Integr Zool 2024. [PMID: 39295232 DOI: 10.1111/1749-4877.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Urbanization processes modulate the immunological challenges faced by animals. Urban habitat transformations reshape pathogen diversity and abundance, while high population density-common in urban exploiter species-promotes disease transmission. Responses to urbanization may include adaptive adjustments of constitutive innate immune defenses (e.g. complement system and natural antibodies [NAbs]), which serve as first-line protection against infections. Here, we investigated associations of habitat urbanization and host population density with complement and NAbs in an urban bird, the feral pigeon Columba livia domestica. To do so, we employed the hemolysis-hemagglutination assay to analyze nearly 200 plasma samples collected across urbanization and pigeon population density gradients in five major cities in Poland. We found a negative association between urbanization score and hemagglutination (i.e. NAbs activity), but not hemolysis (i.e. complement activity), indicating either immunosuppression or adaptive downregulation of this immune defense in highly transformed urban landscape. Population density was not significantly related to either immune parameter, providing no evidence for density-dependent modulation of immune defenses. At the same time, there was a negative association of hemolysis with condition (scaled mass index), suggesting resource allocation trade-offs or contrasting effects of the urban environment on immune defenses and body condition. The results demonstrate that habitat structure can be an important factor shaping the immune defenses of the feral pigeon, although these associations were not mediated by variation in population density. Our study highlights the complexity of the links between immune defenses in wildlife and urbanization and reinforces the need for comprehensive ecoimmunological studies on urban animals.
Collapse
Affiliation(s)
- Maciej Kamiński
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Amar A, Reynolds C, Thomson RL, Dominoni D. Investigating the impacts of artificial light via blackouts. Trends Ecol Evol 2024; 39:612-615. [PMID: 38777636 DOI: 10.1016/j.tree.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Natural experiments provide remarkable opportunities to test the large-scale effects of human activities. Widespread energy blackouts offer such an 'experiment' to test the impacts of artificial light at night (ALAN) on wildlife. We use the situation in South Africa, where regular scheduled blackouts are being implemented, to highlight this opportunity.
Collapse
Affiliation(s)
- Arjun Amar
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa.
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, South Africa
| | - Davide Dominoni
- School of Biodiversity, One Health and Veterinary medicine, University of Glasgow, UK
| |
Collapse
|
5
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
6
|
Strauß AFT, Bosma L, Visser ME, Helm B. Short-time exposure to light at night affects incubation patterns and correlates with subsequent body weight in great tits (Parus major). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:364-376. [PMID: 38327263 DOI: 10.1002/jez.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Artificial light at night (ALAN) widely affects wildlife by blurring light-dark differences, including transitions such as sunrise and sunset, thereby affecting regulation of diel rhythms. As a result, activity onsets in many wild diurnal songbirds advance under ALAN. From chronobiological studies, it is known that the direction and strength of the response to light depends on when during the night exposure takes place. However, these experiments are mostly done under continuous light conditions, when animals have free-running rhythms. It remains unclear whether phase-dependence also holds in entrained, wild songbirds; i.e., does the effect of ALAN on activity patterns differ between exposure in the morning compared to the evening? This information is essential to assess the effects of mitigation measures by limiting ALAN to selected times of the night. We exposed incubating great tits (Parus major) inside the nest-box to 4 h of dim light, of which 1 h overlapped with dawn before sunrise or dusk after sunset. We found a small advancing effect of morning-light on activity onset and of evening-light on offset compared to dark controls but not vice versa. Breeding success and chick condition were unaffected by the light treatments. However, light-treated females had lower weights 9-18 days after the end of the treatment compared to the controls, independent of whether ALAN occurred in the morning or the evening, indicating possible costs of ALAN. Despite the weak behavioral response, ALAN might have affected the females' circadian clock or physiology resulting in lower body condition.
Collapse
Affiliation(s)
- Aurelia F T Strauß
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lies Bosma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Bird Migration Unit, Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|