1
|
Arsenie LV, Semsarilar M, Benkhaled BT, Geneste A, Prélot B, Colombani O, Nicol E, Lacroix-Desmazes P, Ladmiral V, Catrouillet S. Switchable pH-Responsive Morphologies of Coassembled Nucleobase Copolymers. Biomacromolecules 2024; 25:7225-7236. [PMID: 39453823 DOI: 10.1021/acs.biomac.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
This work presents supramolecular coassembled nucleobase copolymers with transitional morphologies upon pH changes (from 7.4 to 10). Uracil- and adenine-containing copolymers were prepared by RAFT, which allowed us to finely tailor the polymerization degree and the composition. The coassembled formulations prepared in an aqueous buffer at two distinct pH (7.4 and 10) formed spherical morphologies at physiological pH. The increase of the pH induced the apparition of various large, irreversible anisotropic supramolecular architectures. Isothermal titration calorimetry revealed that the coassembly at pH 7.4 was mainly guided by H-bonds between complementary nucleobases, while the experiments conducted at pH 10 showed that the assemblies were mainly driven by hydrophobic interactions. These results highlight that the nature of supramolecular interactions (H-bonds or hydrophobic interactions) has a great influence on the morphology of nucleobase-containing coassemblies when changing the pH. These findings may provide further perspectives in the field of advanced nanomaterials.
Collapse
Affiliation(s)
| | - Mona Semsarilar
- IEM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | | | - Amine Geneste
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Benedicte Prélot
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Le Mans 72085, France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Le Mans 72085, France
| | | | - Vincent Ladmiral
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | |
Collapse
|
2
|
Cimmino L, Diaferia C, Rosa M, Morelli G, Rosa E, Accardo A. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates. J Pept Sci 2024; 30:e3573. [PMID: 38471735 DOI: 10.1002/psc.3573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Advantages like biocompatibility, biodegradability and tunability allowed the exploitation of peptides and peptidomimetics as versatile therapeutic or diagnostic agents. Because of their selectivity towards transmembrane receptors or cell membranes, peptides have also been identified as suitable molecules able to deliver in vivo macromolecules, proteins or nucleic acids. However, after the identification of the homodimer diphenylalanine (FF) as an aggregative motif inside the Aβ1-42 polypeptide, short and ultrashort peptides have been studied as building blocks for the fabrication of supramolecular, ordered nanostructures for applications in biotechnological, biomedical and industrial fields. In this perspective, many hybrid molecules that combine FF with other chemical entities have been synthesized and characterized. Two novel hybrid derivatives (tFaF and cFgF), in which the FF homodimer is alternated with the peptide-nucleic acid (PNA) heterodimer "g-c" (guanine-cytosine) or "a-t" (adenine-thymine) and their dimeric forms (tFaF)2 and (cFgF)2 were synthesized. The structural characterization performed by circular dichroism (CD), Fourier transform infrared (FTIR) and fluorescence spectroscopies highlighted the capability of all the FF-PNA derivatives to self-assemble into β-sheet structures. As a consequence of this supramolecular organization, the resulting aggregates also exhibit optoelectronic properties already reported for other similar nanostructures. This photoemissive behavior is promising for their potential applications in bioimaging.
Collapse
Affiliation(s)
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Mariangela Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Elisabetta Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Scognamiglio PL, Vicidomini C, Roviello GN. Dancing with Nucleobases: Unveiling the Self-Assembly Properties of DNA and RNA Base-Containing Molecules for Gel Formation. Gels 2023; 10:16. [PMID: 38247739 PMCID: PMC10815473 DOI: 10.3390/gels10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Nucleobase-containing molecules are compounds essential in biology due to the fundamental role of nucleic acids and, in particular, G-quadruplex DNA and RNA in life. Moreover, some molecules different from nucleic acids isolated from different vegetal sources or microorganisms show nucleobase moieties in their structure. Nucleoamino acids and peptidyl nucleosides belong to this molecular class. Closely related to the above, nucleopeptides, also known as nucleobase-bearing peptides, are chimeric derivatives of synthetic origin and more rarely isolated from plants. Herein, the self-assembly properties of a vast number of structures, belonging to the nucleic acid and nucleoamino acid/nucleopeptide family, are explored in light of the recent scientific literature. Moreover, several technologically relevant properties, such as the hydrogelation ability of some of the nucleobase-containing derivatives, are reviewed in order to make way for future experimental investigations of newly devised nucleobase-driven hydrogels. Nucleobase-containing molecules, such as mononucleosides, DNA, RNA, quadruplex (G4)-forming oligonucleotides, and nucleopeptides are paramount in gel and hydrogel formation owing to their distinctive molecular attributes and ability to self-assemble in biomolecular nanosystems with the most diverse applications in different fields of biomedicine and nanotechnology. In fact, these molecules and their gels present numerous advantages, underscoring their significance and applicability in both material science and biomedicine. Their versatility, capability for molecular recognition, responsiveness to stimuli, biocompatibility, and biodegradability collectively contribute to their prominence in modern nanotechnology and biomedicine. In this review, we emphasize the critical role of nucleobase-containing molecules of different nature in pioneering novel materials with multifaceted applications, highlighting their potential in therapy, diagnostics, and new nanomaterials fabrication as required for addressing numerous current biomedical and nanotechnological challenges.
Collapse
Affiliation(s)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Mosseri A, Sancho-Albero M, Mercurio FA, Leone M, De Cola L, Romanelli A. Tryptophan-PNA gc Conjugates Self-Assemble to Form Fibers. Bioconjug Chem 2023; 34:1429-1438. [PMID: 37486977 PMCID: PMC10436247 DOI: 10.1021/acs.bioconjchem.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - María Sancho-Albero
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Flavia Anna Mercurio
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Luisa De Cola
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alessandra Romanelli
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
5
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
7
|
Immel JR, Bloom S. carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205606. [PMID: 35507689 PMCID: PMC9256812 DOI: 10.1002/anie.202205606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/14/2022]
Abstract
Exchanging the ribose backbone of an oligonucleotide for a peptide can enhance its physiologic stability and nucleic acid binding affinity. Ordinarily, the eneamino nitrogen atom of a nucleobase is fused to the side chain of a polypeptide through a new C-N bond. The discovery of C-C linked nucleobases in the human transcriptome reveals new opportunities for engineering nucleopeptides that replace the traditional C-N bond with a non-classical C-C bond, liberating a captive nitrogen atom and promoting new hydrogen bonding and π-stacking interactions. We report the first late-stage synthesis of C-C linked carba-nucleopeptides (cNPs) using aqueous Rhodamine B photoredox catalysis. We prepare brand-new cNPs in batch, in parallel, and in flow using three long-wavelength photochemical setups. We detail the mechanism of our reaction by experimental and computational studies and highlight the essential role of diisopropylethylamine as a bifurcated two-electron reductant.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Choi H, Park G, Shin E, Shin SW, Jana B, Jin S, Kim S, Wang H, Kwak SK, Xu B, Ryu JH. Intramitochondrial co-assembly between ATP and nucleopeptides induces cancer cell apoptosis. Chem Sci 2022; 13:6197-6204. [PMID: 35733910 PMCID: PMC9159100 DOI: 10.1039/d1sc05738c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are essential intracellular organelles involved in many cellular processes, especially adenosine triphosphate (ATP) production. Since cancer cells require high ATP levels for proliferation, ATP elimination can be a unique target for cancer growth inhibition. We describe a newly developed mitochondria-targeting nucleopeptide (MNP) that sequesters ATP by self-assembling with ATP inside mitochondria. MNP interacts strongly with ATP through electrostatic and hydrogen bonding interactions. MNP exhibits higher binding affinity for ATP (-637.5 kJ mol-1) than for adenosine diphosphate (ADP) (-578.2 kJ mol-1). To improve anticancer efficacy, the small-sized MNP/ADP complex formed large assemblies with ATP inside cancer cell mitochondria. ATP sequestration and formation of large assemblies of the MNP/ADP-ATP complex inside mitochondria caused physical stress by large structures and metabolic disorders in cancer cells, leading to apoptosis. This work illustrates a facile approach to developing cancer therapeutics that relies on molecular assemblies.
Collapse
Affiliation(s)
- Huyeon Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Gaeun Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Eunhye Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Seon Woo Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University 18 Shilongshan Road, Cloud Town Xihu District Hangzhou P. R. China
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| | - Bing Xu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 Unist-gil Ulju-gun Ulsan 44919 Republic of Korea
| |
Collapse
|
9
|
Immel JR, Bloom S. carba
‐Nucleopeptides (
c
NPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacob R. Immel
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
10
|
Giraud T, Hoschtettler P, Pickaert G, Averlant-Petit MC, Stefan L. Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. NANOSCALE 2022; 14:4908-4921. [PMID: 35319034 DOI: 10.1039/d1nr06131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
11
|
Novel insights on nucleopeptide binding: A spectroscopic and in silico investigation on the interaction of a thymine-bearing tetrapeptide with a homoadenine DNA. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Scognamiglio PL, Platella C, Napolitano E, Musumeci D, Roviello GN. From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides. Molecules 2021; 26:3558. [PMID: 34200901 PMCID: PMC8230524 DOI: 10.3390/molecules26123558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.
Collapse
Affiliation(s)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy
| | | |
Collapse
|
13
|
Wang B, Pan R, Zhu W, Xu Y, Tian Y, Endo M, Sugiyama H, Yang Y, Qian X. Short intrinsically disordered polypeptide-oligonucleotide conjugates for programmed self-assembly of nanospheres with temperature-dependent size controllability. SOFT MATTER 2021; 17:1184-1188. [PMID: 33527954 DOI: 10.1039/d0sm01817a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of short intrinsically disordered polypeptide conjugated oligonucleotides (IDPOCs) were rationally developed and assembled into well-defined nanospheres. The nanospheres exhibited excellent reversible thermoresponsive regulation of their contraction and expansion. Furthermore, the nanospheres showed biocompatibility, drug encapsulation and effective cellular uptake.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Rizhao Pan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ye Tian
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210093, China
| | - Masayuki Endo
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
15
|
Guo J, He H, Kim BJ, Wang J, Yi M, Lin C, Xu B. The ratio of hydrogelator to precursor controls the enzymatic hydrogelation of a branched peptide. SOFT MATTER 2020; 16:10101-10105. [PMID: 32785414 PMCID: PMC7677216 DOI: 10.1039/d0sm00867b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report an apparently counterintuitive observation, in which a lower volume fraction of a branched peptide forms a stronger hydrogel after an enterokinase (ENTK) cleaves off the branch from the peptide. By varying the ratios of the branched peptide and ENTK and analysing the ratio of hydrogelator to precursor (H/P) in the enzymatic proteolysis reaction, our study shows that the H/P ratio controls the critical strain of the hydrogel formed, through enzymatic cleavage of the branch from the peptide. This work demonstrates that emergent properties (e.g., hydrogelation) of peptide assemblies, resulting from enzymatic noncovalent synthesis (ENS), are context-dependent, while also providing insights for developing dynamic soft materials via ENS.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Guo J, Tian C, Xu B. Biomaterials based on noncovalent interactions of small molecules. EXCLI JOURNAL 2020; 19:1124-1140. [PMID: 33088250 PMCID: PMC7573174 DOI: 10.17179/excli2020-2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Unlike conventional materials that covalent bonds connecting atoms as the major force to hold the materials together, supramolecular biomaterials rely on noncovalent intermolecular interactions to assemble. The reversibility and biocompatibility of supramolecular biomaterials render them with diverse range of functions and lead to rapid development in the past two decades. This review focuses on the noncovalent and enzymatic control of supramolecular biomaterials, with the introduction to various triggering mechanism to initiate self-assembly. Representative applications of supramolecular biomaterials are highlighted in four categories: tissue engineering, cancer therapy, drug delivery, and molecular imaging. By introducing various applications, we intend to show enzymatic control and noncovalent interactions as a powerful tool for achieving spatiotemporal control of biomaterials both invitro and in vivo for biomedicine.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Changhao Tian
- Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| |
Collapse
|
17
|
Giraud T, Bouguet-Bonnet S, Marchal P, Pickaert G, Averlant-Petit MC, Stefan L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. NANOSCALE 2020; 12:19905-19917. [PMID: 32985645 DOI: 10.1039/d0nr03483e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem 2018; 411:1791-1806. [DOI: 10.1007/s00216-018-1273-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
|
20
|
Musumeci D, Roviello V, Roviello GN. DNA- and RNA-binding ability of oligoDapT, a nucleobase-decorated peptide, for biomedical applications. Int J Nanomedicine 2018; 13:2613-2629. [PMID: 29750033 PMCID: PMC5936014 DOI: 10.2147/ijn.s156381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Nucleobase-bearing peptides and their interaction with DNA and RNA are an important topic in the development of therapeutic approaches. On one hand, they are highly effective for modulating the nucleic-acid-based biological processes. On the other hand, they permit to overcome some of the main factors limiting the therapeutic efficacy of natural oligonucleotides, such as their rapid degradation by nucleases. Methods and results This article describes the synthesis and characterization of a novel thymine-bearing nucleoamino acid based on the l-diaminopropionic acid (l-Dap) and its solid phase oligomerization to α-peptides (oligoDapT), characterized using mass spectrometry, spectroscopic techniques, and scanning electron microscopy (SEM) analysis. The interaction of the obtained nucleopeptide with DNA and RNA model systems as both single strands (dA12, rA12, and poly(rA)) and duplex structures (dA12/dT12 and poly(rA)/poly(rU)) was investigated by means of circular dichroism (CD) and ultraviolet (UV) experiments. From the analysis of our data, a clear ability of the nucleopeptide to bind nucleic acids emerged, with oligoDapT being able to form stable complexes with both unpaired and double-stranded DNA and RNA. In particular, dramatic changes in the dA12/dT12 and poly(rA)/poly(rU) structures were observed as a consequence of the nucleopeptide binding. CD titrations revealed that multiple peptide units bound all the examined nucleic acid targets, with TLdap/A or TLdap/A:T(U) ratios >4 in case of oligoDapT/DNA and ~2 in oligoDapT/RNA complexes. Conclusion Our findings seem to indicate that Dap-based nucleopeptides are interesting nucleic acid binding-tools to be further explored with the aim to efficiently modulate DNA- and RNA-based biological processes.
Collapse
Affiliation(s)
- Domenica Musumeci
- CNR-Institute of Biostructure and Bioimaging, Naples, Italy.,Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and Centro Servizi Metereologici Avanzati, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
21
|
|