1
|
Hatala KG, Roach NT, Behrensmeyer AK, Falkingham PL, Gatesy SM, Williams-Hatala EM, Feibel CS, Dalacha I, Kirinya M, Linga E, Loki R, Alkoro A, Longaye, Longaye M, Lonyericho E, Loyapan I, Nakudo N, Nyete C, Leakey LN. Footprint evidence for locomotor diversity and shared habitats among early Pleistocene hominins. Science 2024; 386:1004-1010. [PMID: 39607911 DOI: 10.1126/science.ado5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/16/2024] [Indexed: 11/30/2024]
Abstract
For much of the Pliocene and Pleistocene, multiple hominin species coexisted in the same regions of eastern and southern Africa. Due to the limitations of the skeletal fossil record, questions regarding their interspecific interactions remain unanswered. We report the discovery of footprints (~1.5 million years old) from Koobi Fora, Kenya, that provide the first evidence of two different patterns of Pleistocene hominin bipedalism appearing on the same footprint surface. New analyses show that this is observed repeatedly across multiple contemporaneous sites in the eastern Turkana Basin. These data indicate a sympatric relationship between Homo erectus and Paranthropus boisei, suggesting that lake margin habitats were important to both species and highlighting the possible influence of varying levels of coexistence, competition, and niche partitioning in human evolution.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Neil T Roach
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Anna K Behrensmeyer
- Department of Paleobiology and Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Merseyside, UK
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI USA
| | - Erin Marie Williams-Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Craig S Feibel
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Anthropology, Rutgers University, Piscataway, NJ, USA
| | - Ibrae Dalacha
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kirinya
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Ezekiel Linga
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Richard Loki
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Longaye
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Malmalo Longaye
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Iyole Loyapan
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Nyiber Nakudo
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Cyprian Nyete
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Louise N Leakey
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Berthaume M, Elton S. Biomechanics in anthropology. Evol Anthropol 2024; 33:e22019. [PMID: 38217465 DOI: 10.1002/evan.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Biomechanics is the set of tools that explain organismal movement and mechanical behavior and links the organism to the physicality of the world. As such, biomechanics can relate behaviors and culture to the physicality of the organism. Scale is critical to biomechanical analyses, as the constitutive equations that matter differ depending on the scale of the question. Within anthropology, biomechanics has had a wide range of applications, from understanding how we and other primates evolved to understanding the effects of technologies, such as the atlatl, and the relationship between identity, society, culture, and medical interventions, such as prosthetics. Like any other model, there is great utility in biomechanical models, but models should be used primarily for hypothesis testing and not data generation except in the rare case where models can be robustly validated. The application of biomechanics within anthropology has been extensive, and holds great potential for the future.
Collapse
Affiliation(s)
| | - Sarah Elton
- Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
3
|
Hatala KG, Gatesy SM, Manafzadeh AR, Lusardi EM, Falkingham PL. Technical note: A volumetric method for measuring the longitudinal arch of human tracks and feet. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24897. [PMID: 38173148 DOI: 10.1002/ajpa.24897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Fossil footprints (i.e., tracks) were believed to document arch anatomical evolution, although our recent work has shown that track arches record foot kinematics instead. Analyses of track arches can thereby inform the evolution of human locomotion, although quantifying this 3-D aspect of track morphology is difficult. Here, we present a volumetric method for measuring the arches of 3-D models of human tracks and feet, using both Autodesk Maya and Blender software. The method involves generation of a 3-D object that represents the space beneath the longitudinal arch, and measurement of that arch object's geometry and spatial orientation. We provide relevant tools and guidance for users to apply this technique to their own data. We present three case studies to demonstrate potential applications. These include, (1) measuring the arches of static and dynamic human feet, (2) comparing the arches of human tracks with the arches of the feet that made them, and (3) direct comparisons of human track and foot arch morphology throughout simulated track formation. The volumetric measurement tool proved robust for measuring 3-D models of human tracks and feet, in static and dynamic contexts. This tool enables researchers to quantitatively compare arches of fossil hominin tracks, in order to derive biomechanical interpretations from them, and/or offers a different approach for quantifying foot morphology in living humans.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA
| | | | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
4
|
Hatala KG, Roach NT, Behrensmeyer AK. Fossil footprints and what they mean for hominin paleobiology. Evol Anthropol 2023; 32:39-53. [PMID: 36223539 DOI: 10.1002/evan.21963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
Hominin footprints have not traditionally played prominent roles in paleoanthropological studies, aside from the famous 3.66 Ma footprints discovered at Laetoli, Tanzania in the late 1970s. This contrasts with the importance of trace fossils (ichnology) in the broader field of paleontology. Lack of attention to hominin footprints can probably be explained by perceptions that these are exceptionally rare and "curiosities" rather than sources of data that yield insights on par with skeletal fossils or artifacts. In recent years, however, discoveries of hominin footprints have surged in frequency, shining important new light on anatomy, locomotion, behaviors, and environments from a wide variety of times and places. Here, we discuss why these data are often overlooked and consider whether they are as "rare" as previously assumed. We review new ways footprint data are being used to address questions about hominin paleobiology, and we outline key opportunities for future research in hominin ichnology.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Neil T Roach
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Hatala KG, Gatesy SM, Falkingham PL. Arched footprints preserve the motions of fossil hominin feet. Nat Ecol Evol 2023; 7:32-41. [PMID: 36604550 DOI: 10.1038/s41559-022-01929-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
The longitudinal arch of the human foot is viewed as a pivotal adaptation for bipedal walking and running. Fossil footprints from Laetoli, Tanzania, and Ileret, Kenya, are believed to provide direct evidence of longitudinally arched feet in hominins from the Pliocene and Pleistocene, respectively. We studied the dynamics of track formation using biplanar X-ray, three-dimensional animation and discrete element particle simulation. Here, we demonstrate that longitudinally arched footprints are false indicators of foot anatomy; instead they are generated through a specific pattern of foot kinematics that is characteristic of human walking. Analyses of fossil hominin tracks from Laetoli show only partial evidence of this walking style, with a similar heel strike but a different pattern of propulsion. The earliest known evidence for fully modern human-like bipedal kinematics comes from the early Pleistocene Ileret tracks, which were presumably made by members of the genus Homo. This result signals important differences in the foot kinematics recorded at Laetoli and Ileret and underscores an emerging picture of locomotor diversity within the hominin clade.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA.
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Kramer PA, Berthaume MA. Introduction to the theme issue ‘Biological anthroengineering’. Interface Focus 2021. [DOI: 10.1098/rsfs.2021.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Patricia Ann Kramer
- Department of Anthropology, University of Washington, Seattle, WA 98195-3100, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195-3100, USA
| | - Michael A. Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, London, UK
| |
Collapse
|