1
|
Liu Y, Wang H, Li J, Li P, Li S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics (Basel) 2024; 9:149. [PMID: 38534834 DOI: 10.3390/biomimetics9030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
The gecko can achieve flexible climbing on various vertical walls and even ceilings, which is closely related to its unique foot adhesion system. In the past two decades, the mechanism of the gecko adhesion system has been studied in-depth, and a verity of gecko-inspired adhesives have been proposed. In addition to its strong adhesion, its easy detachment is also the key to achieving efficient climbing locomotion for geckos. A similar controllable adhesion characteristic is also key to the research into artificial gecko-inspired adhesives. In this paper, the structures, fabrication methods, and applications of gecko-inspired controllable adhesives are summarized for future reference in adhesive development. Firstly, the controllable adhesion mechanism of geckos is introduced. Then, the control mechanism, adhesion performance, and preparation methods of gecko-inspired controllable adhesives are described. Subsequently, various successful applications of gecko-inspired controllable adhesives are presented. Finally, future challenges and opportunities to develop gecko-inspired controllable adhesive are presented.
Collapse
Affiliation(s)
- Yanwei Liu
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Wang
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jiangchao Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Pengyang Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shujuan Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
2
|
Alibardi L. Ultrastructural observations suggest that lipid material of lizard digital pads derives from degenerating cells in the inter‐scale region. ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lorenzo Alibardi
- Department of Biology University of Bologna Bologna Italy
- Comparative Histolab Padova Bologna Italy
| |
Collapse
|
3
|
Khani M, Materzok T, Eslami H, Gorb S, Müller-Plathe F. Water uptake by gecko β-keratin and the influence of relative humidity on its mechanical and volumetric properties. J R Soc Interface 2022; 19:20220372. [PMID: 36128704 PMCID: PMC9490342 DOI: 10.1098/rsif.2022.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
Grand canonical ensemble molecular dynamics simulations are done to calculate the water content of gecko β-keratin as a function of relative humidity (RH). For comparison, we experimentally measured the water uptake of scales of the skin of cobra Naja nigricollis. The calculated sigmoidal sorption isotherm is in good agreement with experiment. To examine the softening effect of water on gecko keratin, we have calculated the mechanical properties of dry and wet keratin samples, and we have established relations between the mechanical properties and the RH. We found that a higher RH causes a decrease in the Young's modulus, the yield stress, the yield strain, the stress at failure and an increase in the strain at failure of the gecko keratin. At low RHs (less than 80%), the change in the mechanical properties is small, with most of the changes occurring at higher RHs. The changes in the macroscopic properties of the keratin are explained by the action of sorbed water on the molecular scale. It causes keratin to swell, thereby increasing the distances between amino acids. This has a weakening effect on amino acid interactions and softens the keratin material. The effect is more pronounced at higher RHs.
Collapse
Affiliation(s)
- Marzieh Khani
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Stanislav Gorb
- Zoological Institute, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Sudersan P, Kappl M, Pinchasik BE, Butt HJ, Endlein T. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles. J Exp Biol 2021; 224:jeb242852. [PMID: 34581416 PMCID: PMC8545753 DOI: 10.1242/jeb.242852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022]
Abstract
Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thomas Endlein
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Singla S, Jain D, Zoltowski CM, Voleti S, Stark AY, Niewiarowski PH, Dhinojwala A. Direct evidence of acid-base interactions in gecko adhesion. SCIENCE ADVANCES 2021; 7:7/21/eabd9410. [PMID: 34138740 PMCID: PMC8133704 DOI: 10.1126/sciadv.abd9410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Dharamdeep Jain
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Chelsea M Zoltowski
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Sriharsha Voleti
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Alyssa Y Stark
- Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA.
| |
Collapse
|
6
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
7
|
Alibardi L. Immunolocalization of corneous proteins including a serine-tyrosine-rich beta-protein in the adhesive pads in the tokay gecko. Microsc Res Tech 2020; 83:889-900. [PMID: 32274891 DOI: 10.1002/jemt.23483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine-glycine-rich corneous beta proteins (CBPs, formerly indicated as beta-keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine-tyrosine-rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine-rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein-lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine-glycine medium rich CBPs and softer IFKs in alpha-layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
9
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
|
11
|
Gecko Adhesion. Biomimetics (Basel) 2018. [DOI: 10.1007/978-3-319-71676-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Liu J, Gong Y, Cao G. Chemical mediated elasto-capillarity of elastic sheets. SOFT MATTER 2017; 13:8048-8054. [PMID: 28944815 DOI: 10.1039/c7sm01575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Capillary forces can cause outstanding deformation of slender structures, and this behavior holds great potential in a plethora of areas. In this study, we propose a facile strategy to mediate the deformation of elastic structures via chemicals, which is named chemo-elasto-capillarity. The experiment shows that the added surfactant can significantly change the interfacial energy of the system, and then modulate the configuration of the adhered structures. The wetted length and deflection of each sheet can be predicted using the large and infinitesimal deformation theory of beams, and these theoretical values are in excellent agreement with the experimental results. Moreover, the proposed method can be successfully extended to unfold two adhered sheets, and one racket like sheet. The present scheme is accessible to accurately regulate elasto-capillarity, and provide some inspirations for engineering some chemical-sensitive devices and humidity-stimulated actuators.
Collapse
Affiliation(s)
- Jianlin Liu
- Department of Engineering Mechanics, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | | | | |
Collapse
|
13
|
Cadirov N, Booth JA, Turner KL, Israelachvili JN. Influence of Humidity on Grip and Release Adhesion Mechanisms for Gecko-Inspired Microfibrillar Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14497-14505. [PMID: 28398039 DOI: 10.1021/acsami.7b01624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Geckos have developed foot pads that allow them to maintain their unique climbing ability despite vast differences of surfaces and environments, from dry desert to humid rainforest. Likewise, successful gecko-inspired mimics should exhibit adhesive and frictional performance across a similarly diverse range of climates. In this work, we focus on the effect of relative humidity (RH) on the "frictional-adhesion" behavior of gecko-inspired adhesive pads. A surface forces apparatus was used to quantitatively measure adhesion and friction forces of a microfibrillar cross-linked polydimethylsiloxane surface against a smooth hemispherical glass disk at varying relative humidity, from 0 to 100% (including fully submerged under water). Geometrically anisotropic tilted half-cylinder microfibers yield a "grip state" (high adhesion and friction forces after shearing along the tilt of the fibers, Fad+ and F∥+) and a "release state" (low adhesion and friction after shearing against the tilt of the fibers, Fad- and F∥-). By appropriate control of the loading path, this allows for transition between strong attachment and easy detachment. Changing the preload and shear direction gives rise to differences in the effective contact area at each fiber and the microscale and nanoscale structure of the contact while changing the relative humidity results in differences in the relative contributions of van der Waals and capillary forces. In combination, both effects lead to interesting trends in the adhesion and friction forces. At up to 75% RH, the grip state adhesion force remains constant and the ratio of grip to release adhesion force does not drop below 4.0. In addition, the friction forces F∥+ and F∥- and the release state adhesion force Fad- exhibit a maximum at intermediate relative humidity between 40% and 75%.
Collapse
Affiliation(s)
- Nicholas Cadirov
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jamie A Booth
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Kimberly L Turner
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Niewiarowski PH, Stark AY, Dhinojwala A. Sticking to the story: outstanding challenges in gecko-inspired adhesives. ACTA ACUST UNITED AC 2016; 219:912-9. [PMID: 27030772 DOI: 10.1242/jeb.080085] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads.
Collapse
Affiliation(s)
- Peter H Niewiarowski
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Alyssa Y Stark
- Department of Biology, University of Louisville, 139 Life Science Building, Louisville, KY 40292, USA
| | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
15
|
The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system. Sci Rep 2016; 6:30936. [PMID: 27480603 PMCID: PMC4969590 DOI: 10.1038/srep30936] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.
Collapse
|
16
|
Stark AY, Dryden DM, Olderman J, Peterson KA, Niewiarowski PH, French RH, Dhinojwala A. Adhesive interactions of geckos with wet and dry fluoropolymer substrates. J R Soc Interface 2016; 12:20150464. [PMID: 26109635 DOI: 10.1098/rsif.2015.0464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor-Winterton approximation and the Young-Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air.
Collapse
|
17
|
Gecko Adhesion. Biomimetics (Basel) 2016. [DOI: 10.1007/978-3-319-28284-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Sahay R, Parveen H, Ranganath AS, Ganesh VA, Baji A. On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Adv 2016. [DOI: 10.1039/c6ra05757h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fabrication of hierarchical PMMA fibrous structures through electrospinning and post AAO templating.
Collapse
Affiliation(s)
- Rahul Sahay
- Engineering Product Development Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore – 487372
- Singapore
| | - Hashina Parveen
- Engineering Product Development Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore – 487372
- Singapore
| | - Anupama Sargur Ranganath
- Engineering Product Development Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore – 487372
- Singapore
| | - V. Anand Ganesh
- Engineering Product Development Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore – 487372
- Singapore
| | - Avinash Baji
- Engineering Product Development Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore – 487372
- Singapore
| |
Collapse
|
19
|
Tao D, Wan J, Pesika NS, Zeng H, Liu Z, Zhang X, Meng Y, Tian Y. Adhesion and friction of an isolated gecko setal array: The effects of substrates and relative humidity. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Autumn K, Niewiarowski PH, Puthoff JB. Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091839] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kellar Autumn
- Department of Biology, Lewis & Clark College, Portland, Oregon 97219; ,
| | | | | |
Collapse
|
21
|
Effects of surface wettability on gecko adhesion underwater. Colloids Surf B Biointerfaces 2014; 122:662-668. [DOI: 10.1016/j.colsurfb.2014.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/20/2014] [Accepted: 07/27/2014] [Indexed: 11/15/2022]
|
22
|
Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0557-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Gillies AG, Fearing RS. Simulation of synthetic gecko arrays shearing on rough surfaces. J R Soc Interface 2014; 11:20140021. [PMID: 24694893 DOI: 10.1098/rsif.2014.0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson-Kendall-Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.
Collapse
Affiliation(s)
- Andrew G Gillies
- Department of Mechanical Engineering, University of California, , Berkeley, CA 94720, USA
| | | |
Collapse
|
24
|
Das S, Chary S, Yu J, Tamelier J, Turner KL, Israelachvili JN. JKR theory for the stick-slip peeling and adhesion hysteresis of gecko mimetic patterned surfaces with a smooth glass surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15006-15012. [PMID: 24191677 DOI: 10.1021/la403420f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Geckos are highly efficient climbers and can run over any kind of surface with impeccable dexterity due to the typical design of their hierarchical foot structure. We have fabricated tilted, i.e., asymmetric, poly(dimethylsiloxane) (PDMS) microflaps of two different densities that mimic the function of the micrometer sized setae on the gecko foot pad. The adhesive properties of these microflaps were investigated in a modified surface forces apparatus; both for normal pure loading and unloading (detachment), as well as unloading after the surfaces were sheared, both along and against the tilt direction. The tilted microflaps showed directional, i.e., anisotropic adhesive behavior when sheared against an optically smooth (RMS roughness ≈ 10 ± 8 nm) SiO2 surface. Enhanced adhesion was measured after shearing the flaps along the tilted (gripping) direction and low adhesion when sheared against the tilted (releasing) direction. A Johnson-Kendall-Roberts (JKR) theory using an effective surface energy and modulus of rigidity (stiffness) quantitatively described the contact mechanics of the tilted microflaps against the SiO2 surface. We also find an increasing adhesion and stick-slip of the surfaces during detachment which we explain qualitatively in terms of the density of flaps, considering it to increase from 0% (no flaps, smooth surface) to 100% (close-packed flaps, effectively smooth surface). Large energy dissipation at the PDMS-silica interface caused by the viscoelastic behavior of the polymer results in stick-slip peeling and hence an enhanced adhesion energy is observed during the separation of the microflaps surface from the smooth SiO2 surface after shearing of the surfaces. For structured multiple contact surfaces, hysteresis as manifested by different loading and unloading paths can be due entirely to the elastic JKR micro-contacts. These results have important implications in the design of biomimetic adhesives.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Chemical Engineering and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
25
|
Zhou M, Tian Y, Sameoto D, Zhang X, Meng Y, Wen S. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10137-10144. [PMID: 24041007 DOI: 10.1021/am402815x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gecko-inspired surfaces are smart dry adhesive surfaces that have attracted much attention because of their wide range of potential applications. However, strong frictional force, rather than adhesive force, is frequently targeted in most of research in this area. In this study, the interfacial adhesive and frictional properties of a gecko-inspired mushroom-shaped polyurethane pillar array surface have been systematically characterized to design and control the interfacial adhesion of the surface by considering the nanoscale interfacial adhesion, the microscale structural compliance and deformation, and the macro-scale actuation. Matching the movement of the leg springs and the interfacial adhesive characteristics between the pillar array surfaces and substrates, a three-legged clamp prototype has been designed and fabricated to successfully pick up and release light and fragile objects with a smooth upper surface, such as a silicon wafer. These results provide a new insight into not only the theoretical understanding of the integrating adhesion mechanisms, but also the practical applications of utilizing and controlling the adhesive and frictional forces of gecko-inspired surfaces.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
26
|
Bhushan B. Gecko Adhesion. Biomimetics (Basel) 2012. [DOI: 10.1007/978-3-642-25408-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Effects of the relative humidity and water droplet on adhesion of a bio-inspired nano-film. Colloids Surf B Biointerfaces 2011; 88:717-21. [DOI: 10.1016/j.colsurfb.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/06/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022]
|
28
|
Peng ZL, Chen SH. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051915. [PMID: 21728579 DOI: 10.1103/physreve.83.051915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Indexed: 05/31/2023]
Abstract
Inspired by the gecko's climbing ability, adhesion between an elastic nanofilm with finite length and a rough substrate with sinusoidal roughness is studied in the present paper, considering the effects of substrate roughness and film thickness. It demonstrates that the normal adhesion force of the nanofilm on a rough substrate depends significantly on the geometrical parameters of the substrate. When the film length is larger than the wavelength of the sinusoidal roughness of the substrate, the normal adhesion force decreases with increasing surface roughness, while the normal adhesion force initially decreases then increases if the wavelength of roughness is larger than the film length. This finding is qualitatively consistent with a previously interesting experimental observation in which the adhesion force of the gecko spatula is found to reduce significantly at an intermediate roughness. Furthermore, it is inferred that the gecko may achieve an optimal spatula thickness not only to follow rough surfaces, but also to saturate the adhesion force. The results in this paper may be helpful for understanding how geckos overcome the influence of natural surface roughness and possess such adhesion to support their weights.
Collapse
Affiliation(s)
- Z L Peng
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing , China
| | | |
Collapse
|
29
|
Köber M, Sahagún E, García-Mochales P, Briones F, Luna M, Sáenz JJ. Nanogeometry matters: unexpected decrease of capillary adhesion forces with increasing relative humidity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2725-2730. [PMID: 21072869 DOI: 10.1002/smll.201001297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The sticking effect between hydrophilic surfaces occurring at increasing relative humidity (RH) is an everyday phenomenon with uncountable implications. Here experimental evidence is presented for a counterintuitive monotonous decrease of the capillary adhesion forces between hydrophilic surfaces with increasing RH for the whole humidity range. It is shown that this unexpected result is related to the actual shape of the asperity at the nanometer scale: a model based on macroscopic thermodynamics predicts this decrease in the adhesion force for a sharp object ending in an almost flat nanometer-sized apex, in full agreement with experiments. This anomalous decrease is due to the fact that a significant growth of the liquid meniscus formed at the contact region with increasing humidity is hindered for this geometry. These results are relevant in the analysis of the dynamical behavior of nanomenisci. They could also have an outstanding value in technological applications, since the undesirable sticking effect between surfaces occurring at increasing RH could be avoided by controlling the shape of the surface asperities at the nanometric scale.
Collapse
Affiliation(s)
- Mariana Köber
- Instituto de Microelectrónica de Madrid CNM-CSIC, Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Puthoff JB, Prowse MS, Wilkinson M, Autumn K. Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 2010; 213:3699-704. [DOI: 10.1242/jeb.047654] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.
Collapse
Affiliation(s)
- Jonathan B. Puthoff
- Department of Biology, Lewis and Clark College, 0615 Palatine Hill Road, Portland, OR 97219-7899, USA
| | - Michael S. Prowse
- Materials Science and Engineering Department, University of Washington, 302 Roberts Hall, Seattle, WA 98195-2120, USA
| | - Matt Wilkinson
- Department of Biology, Lewis and Clark College, 0615 Palatine Hill Road, Portland, OR 97219-7899, USA
| | - Kellar Autumn
- Department of Biology, Lewis and Clark College, 0615 Palatine Hill Road, Portland, OR 97219-7899, USA
- Materials Science and Engineering Department, University of Washington, 302 Roberts Hall, Seattle, WA 98195-2120, USA
| |
Collapse
|
31
|
Sauer RA. Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta. Comput Methods Biomech Biomed Engin 2010; 12:627-40. [PMID: 19319703 DOI: 10.1080/10255840902802917] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A 3D multiscale model is presented which describes the adhesion and deformation of a gecko seta. The multiscale approach combines three models at different length scales: at the top level, on the order of several micrometers, a nonlinear finite element beam model is chosen to capture the branched microstructure of the gecko seta. At the intermediate level, on the order of several nanometers, a second finite element model is used to capture the detailed behaviour of the seta tips, the so-called spatulae. At the lowest level, on the order of a few angstroms, a molecular interaction potential is used to describe the van der Waals adhesion forces between spatulae and substrate. Coarse-graining techiques are used to bridge the scale between the model levels. To illustrate and validate the proposed gecko seta model, numerical pull-off simulations are shown and compared to experimental data from the literature.
Collapse
Affiliation(s)
- Roger A Sauer
- Institute for Continuum Mechanics, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
32
|
Zeng H, Pesika N, Tian Y, Zhao B, Chen Y, Tirrell M, Turner KL, Israelachvili JN. Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7486-7495. [PMID: 19522483 DOI: 10.1021/la900877h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Geckos and smaller animals such as flies, beetles, and spiders have extraordinary climbing abilities: They can firmly attach and rapidly detach from almost any kind of surface. In the case of geckos, this ability is attributed to the surface topography of their attachment pads, which are covered with fine columnar structures (setae). Inspired by this biological system, various kinds of regularly structured or "patterned" surfaces are being fabricated for use as responsive adhesives or in robotic systems. In this study, we theoretically analyze the correlated adhesion and friction (frictional adhesion) of patterned surfaces against smooth (unstructured) surfaces by applying well-established theories of van der Waals forces, together with the classic Johnson-Kendall-Roberts (JKR) theory of contact (or adhesion) mechanics, to recent theories of adhesion-controlled friction. Our results, when considered with recent experiments, suggest criteria for simultaneously optimizing the adhesion and friction of patterned surfaces. We show that both the van der Waals adhesion and the friction forces of flexible, tilted, and optimally spaced setal stalks or (synthetic) pillars are high enough to support not only a large gecko on rough surfaces of ceilings (adhesion) and walls (friction) but also a human being if the foot or toe pads-effectively the area of the hands-have a total area estimated at approximately 230 cm2.
Collapse
Affiliation(s)
- Hongbo Zeng
- Department of Chemical Engineering, Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Adhesion design maps for fibrillar adhesives: the effect of shape. Acta Biomater 2009; 5:597-606. [PMID: 18945655 DOI: 10.1016/j.actbio.2008.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/21/2022]
Abstract
The biomimetic reproduction of adhesion organs, as found in flies, beetles and geckoes, has become a topic of intense research over the past years. Successes, however, have so far been limited. This is due to the vast range of parameters involved, including fibril size, elastic modulus, contact shape, surface roughness and ambient humidity. In previous studies, design and materials selection charts to determine the optimum materials and design combination for dry adhesive systems have been established. The effect of shape on the adhesive properties of single fibers and fiber arrays has also been a research focus. In this paper both approaches are combined to provide more advanced guidelines for the design of optimal adhesive structures.
Collapse
|
34
|
Functional demands of dynamic biological adhesion: an integrative approach. J Comp Physiol B 2008; 179:231-9. [PMID: 18958476 DOI: 10.1007/s00360-008-0310-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
Climbing organisms are constantly challenged to make their way rapidly and reliably across varied and often novel terrain. A diversity of morphologically and mechanically disparate attachment strategies have evolved across widely distributed phylogenetic groups to aid legged animals in scaling these surfaces, notable among them some very impressive adhesive pads. Despite the differences between, for example, the dry fibrillar pads of geckos and the smooth, secretion-aided pads of stick insects, I hypothesize that they face similar functional demands in their environment. I outline three broad criteria defining dynamic biological adhesion: reusability, reversibility, and substrate tolerance. Organismal adhesive pads must be able to attach repeatedly without significant decline in performance, detach easily at will, and adhere strongly to the broadest possible range of surfaces in their habitat. A survey of the literature suggests that evidence for these general principles can be found in existing research, but that many gaps remain to be filled. By taking a comparative, integrative approach to biological dynamic adhesion, rather than focusing on a few model organisms, investigators will continue to discover new and interesting attachment strategies in natural systems.
Collapse
|
35
|
Chen B, Wu P, Gao H. Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface 2008; 6:529-37. [PMID: 18801716 DOI: 10.1098/rsif.2008.0322] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motivated by recent studies on reversible adhesion mechanisms of geckos and insects, we investigate the effect of pre-tension on the orientation-dependent adhesion strength of an elastic tape adhering on a substrate. Our analysis shows that the pre-tension can significantly increase the peel-off force at small peeling angles while decreasing it at large peeling angles, leading to a strongly reversible adhesion. More interestingly, we find that there exists a critical value of pre-tension beyond which the peel-off force plunges to zero at a force-independent critical peeling angle. We further show that the level of pre-tension required for such force-independent detachment at a critical angle can be induced by simply dragging a spatula pad along a substrate at sufficiently low angles. These results provide a feasible explanation of relevant experimental observations on gecko adhesion and suggest possible strategies to design strongly reversible adhesives via pre-tension.
Collapse
Affiliation(s)
- Bin Chen
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
| | | | | |
Collapse
|
36
|
Abstract
Gecko adhesion is expected to be temperature insensitive over the range of temperatures typically experienced by geckos. Previous work is limited and equivocal on whether this expectation holds. We tested the temperature dependence of adhesion in Tokay and Day geckos and found that clinging ability at 12 degrees C was nearly double the clinging ability at 32 degrees C. However, rather than confirming a simple temperature effect, our data reveal a complex interaction between temperature and humidity that can drive differences in adhesion by as much as two-fold. Our findings have important implications for inferences about the mechanisms underlying the exceptional clinging capabilities of geckos, including whether performance of free-ranging animals is based solely on a dry adhesive model. An understanding of the relative contributions of van der Waals interactions and how humidity and temperature variation affects clinging capacities will be required to test hypotheses about the evolution of gecko toepads and is relevant to the design and manufacture of synthetic mimics.
Collapse
|
37
|
Autumn K, Gravish N. Gecko adhesion: evolutionary nanotechnology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:1575-1590. [PMID: 18192170 DOI: 10.1098/rsta.2007.2173] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.
Collapse
Affiliation(s)
- Kellar Autumn
- Department of Biology, Lewis & Clark College, Portland, OR 97219, USA.
| | | |
Collapse
|
38
|
Chen B, Wu P, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proc Math Phys Eng Sci 2008. [DOI: 10.1098/rspa.2007.0350] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanics of reversible adhesion of the gecko is investigated in terms of the attachment and detachment mechanisms of the hierarchical microstructures on its toe. At the bottom of the hierarchy, we show that a spatula pad of tiny thickness can be well absorbed onto a substrate with a large surface area and a highly constrained decohesion process zone, both of which are beneficial for robust attachment. With different peeling angles, the peeling strength of a spatula pad for attachment can be 10 times larger than that for detachment. At the intermediate level of hierarchy, we show that a seta can achieve a stress level similar to that in the spatula pad by uniformly distributing adhesion forces; as a consequence, the 10 times difference in the peel-off force of a single spatula pad for attachment and detachment is magnified up to a 100 times difference in adhesion energy at the level of seta. At the top of the hierarchy, the attachment process of a gecko toe is modelled as a pad under displacement-controlled pulling, leading to an adhesive force much larger than the gecko's body weight, while the associated detachment process is modelled as a pad under peeling, resulting in a negligible peel-off force. The present work reveals, in a more systematic way than previous studies in the literature, that the hierarchical microstructures on the gecko's toe can indeed provide the gecko with robust adhesion for attachment and reversible adhesion for easy detachment at the same time.
Collapse
Affiliation(s)
- B Chen
- Department of Mechanical Engineering, McMaster UniversityHamilton, ON, Canada L8S 4L7
| | - P.D Wu
- Department of Mechanical Engineering, McMaster UniversityHamilton, ON, Canada L8S 4L7
| | - H Gao
- Division of Engineering, Brown UniversityProvidence, RI 02912, USA
| |
Collapse
|