1
|
López‐Romero FA, Klimpfinger C, Tanaka S, Kriwet J. Growth trajectories of prenatal embryos of the deep-sea shark Chlamydoselachus anguineus (Chondrichthyes). JOURNAL OF FISH BIOLOGY 2020; 97:212-224. [PMID: 32307702 PMCID: PMC7497067 DOI: 10.1111/jfb.14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Chlamydoselachus anguineus, Garman 1884, commonly called the frilled shark, is a deep-sea shark species occurring up to depths of 1300 m. It is assumed to represent an ancient morphotype of sharks (e.g., terminal mouth opening, more than five gill slits) and thus is often considered to represent plesiomorphic traits for sharks. Therefore, its early ontogenetic developmental traits are important for understanding the evolution of its particular phenotype. Here, we established six stages for prenatal embryos and used linear measurements and geometric morphometrics to analyse changes in shape and size as well as their timing during different embryonic stages. Our results show a change in head shape and a relocation of the mouth opening at a late stage of development. We also detected a negative allometric growth of the head and especially the eye compared to the rest of the body and a sexual dimorphism in total body length, which differs from the known data for adults. A multivariate analysis of covariance shows a significant interaction of shape related to the logarithm of centroid size and developmental stage. Geometric morphometrics results indicate that the head shape changes as a covariate of body size while not accounting for differences between sexes. The growth pattern of stages 32 and 33 indicates a shift in head shape, thus highlighting the moment in development when the jaws start to elongate anteriorly to finally achieve the adult condition of terminal mouth opening rather than retaining the early embryonic subterminal position as is typical for sharks. Thus, the antero-terminal mouth opening of the frilled shark has to be considered a derived feature.
Collapse
Affiliation(s)
| | | | - Sho Tanaka
- School of Marine Science and Technology, Faculty of Marine Science and TechnologyTokai UniversityShizuoka Shimizu‐kuJapan
| | - Jürgen Kriwet
- Department of PaleontologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Roman JM, Chierichetti MA, Barbini SA, Scenna LB. Feeding habits of the cockfish, Callorhinchus callorynchus (Holocephali: Callorhinchidae) from off northern Argentina. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2018-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The feeding habits of Callorhinchus callorynchus were investigated in coastal waters off northern Argentina. The effect of body size, seasons and regions was evaluated on female diet composition using a multiple-hypothesis modelling approach. Callorhinchus callorynchus fed mainly on bivalves (55.61% PSIRI), followed by brachyuran crabs (10.62% PSIRI) and isopods (10.13% PSIRI). Callorhinchus callorynchus females showed changes in the diet composition with increasing body size and also between seasons and regions. Further, this species is able to consume larger bivalves as it grows. Trophic level was 3.15, characterizing it as a secondary consumer. We conclude that C. callorynchus showed a behavior of crushing hard prey, mainly on bivalves, brachyuran, gastropods and anomuran crabs. Females of this species shift their diet with increasing body size and in response to seasonal and regional changes in prey abundance or distribution.
Collapse
Affiliation(s)
- Jorge M. Roman
- Universidad Nacional de Mar del Plata, Argentina; Comisión de Investigaciones Científicas, Argentina
| | | | - Santiago A. Barbini
- Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Lorena B. Scenna
- Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
3
|
|
4
|
Atkinson CJL, Martin KJ, Fraser GJ, Collin SP. Morphology and distribution of taste papillae and oral denticles in the developing oropharyngeal cavity of the bamboo shark, Chiloscyllium punctatum. Biol Open 2016; 5:1759-1769. [PMID: 27797725 PMCID: PMC5200915 DOI: 10.1242/bio.022327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gustation in sharks is not well understood, especially within species that ingest food items using suction. This study examines the morphological and immunohistochemical characterisation of taste papillae and oral denticles in the oropharynx of the brown-banded bamboo shark Chiloscyllium punctatum and compares their distribution during development. Taste papillae of C. punctatum are located throughout the oropharyngeal region and are most concentrated on the oral valves (2125-3483 per cm2 in embryos; 89-111 per cm2 in mature adults) close to the tooth territories. Papillae appearance is comparable at all stages of development, with the exception of the embryos (unhatched specimens), where no microvilli are present. Oral valve papillae are comparable in structure to Type I taste buds of teleost fishes, whereas those of the rest of the oropharyngeal region are comparable to Type II. Both types of papillae show immunofluorescence for a number of markers of taste buds, including β-Catenin and Sox2. Taste papillae densities are highest in embryos with 420-941 per cm2 compared to 8-29 per cm2 in mature adults. The total number of papillae remains around 1900 for all stages of development. However, the papillae increase in diameter from 72±1 μm (mean±s.e.m.) in embryos to 310±7 μm in mature individuals. Microvilli protrude in multiple patches at the apical tip of the papilla covering ∼0.5% of the papillar surface area. We further document the relationship between taste papillae and the closely associated oral denticles within the shark orophayngeal cavity. Oral denticles first break through the epithelium in the antero-central region of the dorsal oral cavity, shortly after the emergence of teeth, around time of hatching. Denticles are located throughout the oropharyngeal epithelium of both immature and mature stages, with the highest concentrations in the antero-dorsal oral cavity and the central regions of the pharynx. These denticle-rich areas of the mouth and pharynx are therefore thought to protect the epithelium, and importantly the taste papillae, from abrasion since they correlate with regions where potential food items are processed or masticated for consumption. Taste papillae and denticles are more dense in anterior oropharyngeal regions in close association with the oral jaws and teeth, and in the juvenile or hatchling shark taste units are functional, and innervated, allowing the shark to seek out food in utero, at birth or on emergence from the egg case. Summary: Characterisation of taste buds in the developing bamboo shark, Chiloscyllium punctatum, reveals that taste papillae are functional, innervated units, allowing the shark to seek out food in utero, at birth or following hatching.
Collapse
Affiliation(s)
- Carla J L Atkinson
- School of Biomedical Sciences and the Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kyle J Martin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Shaun P Collin
- School of Biomedical Sciences and the Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia .,The School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
5
|
Gardiner JM, Atema J, Hueter RE, Motta PJ. Modulation of shark prey capture kinematics in response to sensory deprivation. ZOOLOGY 2016; 120:42-52. [PMID: 27618704 DOI: 10.1016/j.zool.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality.
Collapse
Affiliation(s)
- Jayne M Gardiner
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., Tampa, FL 33620, USA; Mote Marine Laboratory, Center for Shark Research, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Jelle Atema
- Boston University Marine Program, 5 Cummington Mall, Boston, MA 02215, USA
| | - Robert E Hueter
- Mote Marine Laboratory, Center for Shark Research, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Philip J Motta
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
6
|
Wilga CAD, Diniz SE, Steele PR, Sudario-Cook J, Dumont ER, Ferry LA. Ontogeny of Feeding Mechanics in Smoothhound Sharks: Morphology and Cartilage Stiffness. Integr Comp Biol 2016; 56:442-8. [DOI: 10.1093/icb/icw078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Feeding Behavior of Subadult Sixgill Sharks (Hexanchus griseus) at a Bait Station. PLoS One 2016; 11:e0156730. [PMID: 27243237 PMCID: PMC4887027 DOI: 10.1371/journal.pone.0156730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/18/2016] [Indexed: 11/19/2022] Open
Abstract
This is the first in-situ study of feeding behaviors exhibited by bluntnose sixgill sharks. Bait was placed beneath the Seattle Aquarium pier situated on the waterfront in Elliott Bay, Puget Sound, Washington at 20m of water depth. Cameras and lights were placed around the bait box to record sixgill shark presence and behavior while feeding. Analysis of feeding behavior revealed that sixgills utilize a bite comparable to many other elasmobranchs and aquatic vertebrates, have the ability to protrude their upper jaw, change their feeding behavior based on the situation, and employ sawing and lateral tearing during manipulation. The versatility of their feeding mechanism and the ability of sixgills to change their capture and food manipulation behaviors may have contributed to the species’ worldwide distribution and evolutionary success.
Collapse
|
8
|
Day SW, Higham TE, Holzman R, Van Wassenbergh S. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes. Integr Comp Biol 2015; 55:21-35. [PMID: 25980568 DOI: 10.1093/icb/icv032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals.
Collapse
Affiliation(s)
- Steven W Day
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium Steven.Day@RIT
| | - Timothy E Higham
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Roi Holzman
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Sam Van Wassenbergh
- *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium *Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Biology, University of California, Riverside, CA 92521, USA; Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences, Eilat 88103, Israel; Evolutionary Morphology of Vertebrates, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium; Biology, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| |
Collapse
|
9
|
Gemmell BJ, Adhikari D, Longmire EK. Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey. J R Soc Interface 2013; 11:20130880. [PMID: 24227312 DOI: 10.1098/rsif.2013.0880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture.
Collapse
Affiliation(s)
- Brad J Gemmell
- Aerospace Engineering and Mechanics, University of Minnesota, , Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
10
|
Oliver SP, Turner JR, Gann K, Silvosa M, D'Urban Jackson T. Thresher sharks use tail-slaps as a hunting strategy. PLoS One 2013; 8:e67380. [PMID: 23874415 PMCID: PMC3707734 DOI: 10.1371/journal.pone.0067380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
The hunting strategies of pelagic thresher sharks (Alopias pelagicus) were investigated at Pescador Island in the Philippines. It has long been suspected that thresher sharks hunt with their scythe-like tails but the kinematics associated with the behaviour in the wild are poorly understood. From 61 observations recorded by handheld underwater video camera between June and October 2010, 25 thresher shark shunting events were analysed. Thresher sharks employed tail-slaps to debilitate sardines at all times of day. Hunting events comprised preparation, strike, wind-down recovery and prey item collection phases, which occurred sequentially. Preparation phases were significantly longer than the others, presumably to enable a shark to windup a tail-slap. Tail-slaps were initiated by an adduction of the pectoral fins, a manoeuvre that changed a thresher shark's pitch promoting its posterior region to lift rapidly, and stall its approach. Tail-slaps occurred with such force that they may have caused dissolved gas to diffuse out of the water column forming bubbles. Thresher sharks were able to consume more than one sardine at a time, suggesting that tail-slapping is an effective foraging strategy for hunting schooling prey. Pelagic thresher sharks appear to pursue sardines opportunistically by day and night, which may make them vulnerable to fisheries. Alopiids possess specialist pectoral and caudal fins that are likely to have evolved, at least in part, for tail-slapping. The evidence is now clear; thresher sharks really do hunt with their tails.
Collapse
Affiliation(s)
- Simon P Oliver
- The Thresher Shark Research and Conservation Project, Malapascua Island, Cebu, The Philippines.
| | | | | | | | | |
Collapse
|
11
|
Goto T, Shiba Y, Shibagaki K, Nakaya K. Morphology and Ventilatory Function of Gills in the Carpet Shark Family Parascylliidae (Elasmobranchii, Orectolobiformes). Zoolog Sci 2013; 30:461-8. [DOI: 10.2108/zsj.30.461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Guttridge T, Gruber S, Gledhill K, Croft D, Sims D, Krause J. Social preferences of juvenile lemon sharks, Negaprion brevirostris. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Van Wassenbergh S, Aerts P. Aquatic suction feeding dynamics: insights from computational modelling. J R Soc Interface 2009; 6:149-58. [PMID: 18782720 DOI: 10.1098/rsif.2008.0311] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic suction feeding in vertebrates involves extremely unsteady flow, externally as well as internally of the expanding mouth cavity. Consequently, studying the hydrodynamics involved in this process is a challenging research area, where experimental studies and mathematical models gradually aid our understanding of how suction feeding works mechanically. Especially for flow patterns inside the mouth cavity, our current knowledge is almost entirely based on modelling studies. In the present paper, we critically discuss some of the assumptions and limitations of previous analytical models of suction feeding using computational fluid dynamics.
Collapse
Affiliation(s)
- Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium.
| | | |
Collapse
|