1
|
Ikegami S, Ishiyama D, Oda Y, Niihara K, Yoshida M, Honda K, Inoue TA, Kuroda K. Morphological Observation of the Pupal Body of Trypoxylus dichotomus Using 9.4T MR Imaging. Magn Reson Med Sci 2024; 23:242-248. [PMID: 36754421 PMCID: PMC11024720 DOI: 10.2463/mrms.bc.2022-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Metamorphosis in the pupae of the Trypoxylus dichotomus was continuously observed at 9.4T until their emergence. A large liquid-like mass occupied most of the volume in the trunk, while the surrounding tissue already existed at the beginning of the observation period. As the mass shrunk, tissues such as flight muscle formed, whereas the reservoir became prolonged to form the intestinal tract. This implies that the liquid-like mass worked as the raw material for creating adult tissues.
Collapse
Affiliation(s)
- Shoto Ikegami
- Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Dai Ishiyama
- Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Kinuko Niihara
- Department of Natural Sciences, Faculty of Science and Engineering, Tokyo City University, Tokyo, Japan
| | - Masafumi Yoshida
- Department of Natural Sciences, Faculty of Science and Engineering, Tokyo City University, Tokyo, Japan
| | - Keiichi Honda
- Saijo Ecology Institute, Higashihiroshima, Hiroshima, Japan
| | - Takashi A. Inoue
- Department of Natural Sciences, Faculty of Science and Engineering, Tokyo City University, Tokyo, Japan
| | - Kagayaki Kuroda
- Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
- Department of Human and Information Science, School of Information Science and Technology, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
2
|
Geffen R, Braun C. Effects of Geometric Sound on Brainwave Activity Patterns, Autonomic Nervous System Markers, Emotional Response, and Faraday Wave Pattern Morphology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:9844809. [PMID: 38586300 PMCID: PMC10997421 DOI: 10.1155/2024/9844809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 04/09/2024]
Abstract
This study introduces Geometric Sound as a subfield of spatial sound featuring audio stimuli which are sonic holograms of mathematically defined 3D shapes. The effects of Geometric Sound on human physiology were investigated through EEG, heart rate, blood pressure, and a combination of questionnaires monitoring 50 healthy participants in two separate experiments. The impact of Geometric Sound on Faraday wave pattern morphology was further studied. The shapes examined, pyramid, cube, and sphere, exhibited varying significant effects on autonomic nervous system markers, brainwave power amplitude, topology, and connectivity patterns, in comparison to both the control (traditional stereo), and recorded baseline where no sound was presented. Brain activity in the Alpha band exhibited the most significant results, additional noteworthy results were observed across analysis paradigms in all frequency bands. Geometric Sound was found to significantly reduce heart rate and blood pressure and enhance relaxation and general well-being. Changes in EEG, heart rate, and blood pressure were primarily shape-dependent, and to a lesser extent sex-dependent. Pyramid Geometric Sound yielded the most significant results in most analysis paradigms. Faraday Waves patterns morphology analysis indicated that identical frequencies result in patterns that correlate with the excitation Geometric Sound shape. We suggest that Geometric Sound shows promise as a noninvasive therapeutic approach for physical and psychological conditions, stress-related disorders, depression, anxiety, and neurotrauma. Further research is warranted to elucidate underlying mechanisms and expand its applications.
Collapse
Affiliation(s)
| | - Christoph Braun
- Tübingen University, MEG-Center, Tübingen 72074, Germany
- HIH Hertie Institute for Clinical Brain Research, Tübingen, Germany
- CIMeC Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
3
|
James DG. Monarch Butterflies in Western North America: A Holistic Review of Population Trends, Ecology, Stressors, Resilience and Adaptation. INSECTS 2024; 15:40. [PMID: 38249046 PMCID: PMC10817040 DOI: 10.3390/insects15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Monarch butterfly populations in western North America suffered a substantial decline, from millions of butterflies overwintering in California in the 1980s to less than 400,000 at the beginning of the 21st century. The introduction of neonicotinoid insecticides in the mid-1990s and their subsequent widespread use appears to be the most likely major factor behind this sudden decline. Habitat loss and unfavorable climates (high temperatures, aridity, and winter storms) have also played important and ongoing roles. These factors kept overwintering populations stable but below 300,000 during 2001-2017. Late winter storm mortality and consequent poor spring reproduction drove winter populations to less than 30,000 butterflies during 2018-2019. Record high temperatures in California during the fall of 2020 appeared to prematurely terminate monarch migration, resulting in the lowest overwintering population (1899) ever recorded. Many migrants formed winter-breeding populations in urban areas. Normal seasonal temperatures in the autumns of 2021 and 2022 enabled overwintering populations to return to around the 300,000 level, characteristic of the previous two decades. Natural enemies (predators, parasitoids, parasites, and pathogens) may be important regional or local drivers at times but they are a consistent and fundamental part of monarch ecology. Human interference (capture, rearing) likely has the least impact on monarch populations. The rearing of monarch caterpillars, particularly by children, is an important human link to nature that has positive ramifications for insect conservation beyond monarch butterflies and should be encouraged.
Collapse
Affiliation(s)
- David G James
- Department of Entomology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA
| |
Collapse
|
4
|
Pocius VM, Majewska AA, Freedman MG. The Role of Experiments in Monarch Butterfly Conservation: A Review of Recent Studies and Approaches. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2022; 115:10-24. [PMID: 35069967 PMCID: PMC8764570 DOI: 10.1093/aesa/saab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Monarch butterflies (Danaus plexippus) (Lepidoptera Danaidae Danaus plexippus (Linnaeus)) are an iconic species of conservation concern due to declines in the overwintering colonies over the past twenty years. Because of this downward trend in overwintering numbers in both California and Mexico, monarchs are currently considered 'warranted-but-precluded' for listing under the Endangered Species Act. Monarchs have a fascinating life history and have become a model system in chemical ecology, migration biology, and host-parasite interactions, but many aspects of monarch biology important for informing conservation practices remain unresolved. In this review, we focus on recent advances using experimental and genetic approaches that inform monarch conservation. In particular, we emphasize three areas of broad importance, which could have an immediate impact on monarch conservation efforts: 1) breeding habitat and host plant use, 2) natural enemies and exotic caterpillar food plants, and 3) the utility of genetic and genomic approaches for understanding monarch biology and informing ongoing conservation efforts. We also suggest future studies in these areas that could improve our understanding of monarch behavior and conservation.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | - Micah G Freedman
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Vesna V. Vibration matters: collective blue morph effect. AI & SOCIETY 2012. [DOI: 10.1007/s00146-011-0359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Dokukin ME, Guz NV, Sokolov I. Towards nano-physiology of insects with atomic force microscopy. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:260-264. [PMID: 21093449 DOI: 10.1016/j.jinsphys.2010.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Little study of insects with modern nanotechnology tools has been done so far. Here we use one of such tool, atomic force microscopy (AFM) to study surface oscillations of the ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5-10Hz). Here we demonstrate three different ways with which one can identify the origins of the observed peaks - by physical positioning the probe near a specific organ, and by using biological or chemical stimuli. We report on identification of high frequency peaks associated with H. convergens heart, spiracular closer muscles, and oscillations associated with muscles activated while drinking. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing "nanophysiology" of insects.
Collapse
Affiliation(s)
- M E Dokukin
- Department of Physics, Clarkson University, NY 13699, United States
| | | | | |
Collapse
|
7
|
Guz NV, Dokukin ME, Sokolov I. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli. PLoS One 2010; 5:e12834. [PMID: 20877638 PMCID: PMC2943898 DOI: 10.1371/journal.pone.0012834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022] Open
Abstract
Background Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. Methodology/Principal Findings Here we applied an atomic force microscopy (AFM) method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm) light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. Conclusions The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of “nanophysiology” of insects.
Collapse
Affiliation(s)
- Natalia V. Guz
- Department of Physics, Clarkson University, Potsdam, New York, United States of America
| | - Maxim E. Dokukin
- Department of Physics, Clarkson University, Potsdam, New York, United States of America
| | - Igor Sokolov
- Department of Physics, Clarkson University, Potsdam, New York, United States of America
- Nanoengineering and Biotechnology Laboratories Center (NABLAB), Clarkson University, Potsdam, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Panduputra Y, Ng TW, Neild A, Robinson M. Intensity influence on Gaussian beam laser based measurements using quadrant photodiodes. APPLIED OPTICS 2010; 49:3669-3675. [PMID: 20648132 DOI: 10.1364/ao.49.003669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In many measurement applications using quadrant photodiodes, the signal is normally obtained from integrated devices incorporating current-to-voltage amplifiers that provide the necessary difference outputs with amplification. Quadrant photodiodes permit two-axis laser beam size and beam deflection determination. We show here that photodiode saturation, nonlinear characteristics of amplifying circuits, and voltage clipping features meant to prevent the output of a circuit from exceeding a predetermined voltage level to distort applied waveforms, play a significant role in measurement at low and high intensity levels, respectively. These two factors conspire to underestimate laser beam size measurement. A best-fit computation of the size versus power trend was found to permit satisfactory estimation of the beam size as well as the optimal laser power to be used. The intensity of light was also found to strongly affect the sensitivity of beam deflection measurements, in which a correction based on best-fit computation was deficient. In this case, calibration steps would be needed when light levels changed.
Collapse
Affiliation(s)
- Yohannes Panduputra
- Laboratory for Optics, Acoustics, & Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|