1
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Chung HH, Bellefeuille SD, Miller HN, Gaborski TR. Extended live-tracking and quantitative characterization of wound healing and cell migration with SiR-Hoechst. Exp Cell Res 2018; 373:198-210. [PMID: 30399373 PMCID: PMC6327846 DOI: 10.1016/j.yexcr.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023]
Abstract
Cell migration is essential to many life processes, including immune response, tissue repair, and cancer progression. A reliable quantitative characterization of the cell migration can therefore aid in the high throughput screening of drug efficacy in wound healing and cancer treatments. In this work, we report what we believe is the first use of SiR-Hoechst for extended live tracking and automated analysis of cell migration and wound healing. We showed through rigorous statistical comparisons that this far-red label does not affect migratory behavior. We observed excellent automated tracking of random cell migration, in which the motility parameters (speed, displacement, path length, directionality ratio, persistence time, and direction autocorrelation) obtained closely match those obtained from manual tracking. We also present an analysis framework to characterize the healing of a scratch wound from the perspective of single cells. The use of SiR-Hoechst is advantageous for the crowded environments in wound healing assays because as long as cell nuclei do not overlap, continuous tracking can be maintained even if there is cell-cell contact. In this paper, we report wound recovery based on the number of cells migrating into the wound over time, normalized by the initial cell count prior to the infliction of the wound. This normalized cell count approach is impervious to operator bias during the arbitration of wound edges and is also robust against variability that arises due to differences in the cell density of different samples. Additional wound healing characteristics were also defined based on the evolution of cell speed and directionality during healing. Not unexpected, the wound healing cells exhibited much higher tendency to maintain the same migratory direction in comparison to the randomly migrating cells. The use of SiR-Hoechst thus greatly simplified the automation of single cell and whole population analysis with high spatial and temporal resolution over extended periods of time.
Collapse
Affiliation(s)
- Henry H Chung
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Sean D Bellefeuille
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Hayley N Miller
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Thomas R Gaborski
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States.
| |
Collapse
|
3
|
Martin KS, Blemker SS, Peirce SM. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J Appl Physiol (1985) 2015; 118:1299-309. [PMID: 25722379 DOI: 10.1152/japplphysiol.01150.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/20/2015] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of the rat by incorporating eight fiber-type and size parameters to explore how these parameters, which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% decrease in fiber size), whereas the extensor digitorum communis atrophied the least (32%). Analysis of these simulations revealed that both fiber-type distribution and fiber-size distribution influence the sensitivity to disuse atrophy even though no single tissue architecture parameter correlated with atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to investigate cellular interactions during atrophy. Sensitivity analyses revealed that fibroblast agents have the potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both tissue adaptations and cellular interactions in skeletal muscle during atrophy.
Collapse
Affiliation(s)
- Kyle S Martin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia;
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia; Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
4
|
Gardner A, Borthwick LA, Fisher AJ. Lung epithelial wound healing in health and disease. Expert Rev Respir Med 2014; 4:647-60. [DOI: 10.1586/ers.10.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Wang CC, Jamal L, Janes KA. Normal morphogenesis of epithelial tissues and progression of epithelial tumors. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2012; 4:51-78. [PMID: 21898857 PMCID: PMC3242861 DOI: 10.1002/wsbm.159] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Leen Jamal
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Engelberg JA, Datta A, Mostov KE, Hunt CA. MDCK cystogenesis driven by cell stabilization within computational analogues. PLoS Comput Biol 2011; 7:e1002030. [PMID: 21490722 PMCID: PMC3072361 DOI: 10.1371/journal.pcbi.1002030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/24/2011] [Indexed: 12/17/2022] Open
Abstract
The study of epithelial morphogenesis is fundamental to increasing our
understanding of organ function and disease. Great progress has been made
through study of culture systems such as Madin-Darby canine kidney (MDCK) cells,
but many aspects of even simple morphogenesis remain unclear. For example, are
specific cell actions tightly coupled to the characteristics of the cell's
environment or are they more often cell state dependent? How does the single
lumen, single cell layer cyst consistently emerge from a variety of cell
actions? To improve insight, we instantiated in silico analogues that used
hypothesized cell behavior mechanisms to mimic MDCK cystogenesis. We tested them
through in vitro experimentation and quantitative validation. We observed novel
growth patterns, including a cell behavior shift that began around day five of
growth. We created agent-oriented analogues that used the cellular Potts model
along with an Iterative Refinement protocol. Following several refinements, we
achieved a degree of validation for two separate mechanisms. Both survived
falsification and achieved prespecified measures of similarity to cell culture
properties. In silico components and mechanisms mapped to in vitro counterparts.
In silico, the axis of cell division significantly affects lumen number without
changing cell number or cyst size. Reducing the amount of in silico luminal cell
death had limited effect on cystogenesis. Simulations provide an observable
theory for cystogenesis based on hypothesized, cell-level operating
principles. Epithelial cells perform essential functions throughout the body, acting as both
barrier and transporter and allowing an organism to survive and thrive in varied
environments. Although the details of many processes that occur within
individual cells are well understood, we still lack a thorough understanding of
how cells coordinate their behaviors to create complex tissues. In order to
achieve deeper insight, we created a list of targeted attributes and plausible
rules for the growth of multicellular cysts formed by Madin-Darby canine kidney
(MDCK) cells grown in vitro. We then designed in silico analogues of MDCK
cystogenesis using object-oriented programming. In silico components (such as
the cells and lumens) and their behaviors directly mapped to in vitro components
and mechanisms. We conducted in vitro experiments to generate data that would
validate or falsify the in silico analogues and then iteratively refined the
analogues to mimic that data. Cells in vitro begin to stabilize at around the
fifth day even as cysts continue to expand. The in silico system mirrored that
behavior and others, achieving new insights. For example, luminal cell death is
not strictly required for cystogenesis, and cell division orientation is very
important for normal cyst growth.
Collapse
Affiliation(s)
- Jesse A. Engelberg
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of
California, San Francisco, California, United States of America
| | - Anirban Datta
- Department of Anatomy, University of California, San Francisco,
California, United States of America
| | - Keith E. Mostov
- Department of Anatomy, University of California, San Francisco,
California, United States of America
| | - C. Anthony Hunt
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of
California, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of
California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hunt CA, Ropella GE. Moving beyond in silico tools to in silico science in support of drug development research. Drug Dev Res 2010. [DOI: 10.1002/ddr.20412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|