1
|
Highton D, Caldwell M, Tachtsidis I, Elwell CE, Smith M, Cooper CE. The influence of carbon dioxide on cerebral metabolism and oxygen consumption: combining multimodal monitoring with dynamic systems modelling. Biol Open 2024; 13:bio060087. [PMID: 38180242 PMCID: PMC10810564 DOI: 10.1242/bio.060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.
Collapse
Affiliation(s)
- David Highton
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Princess Alexandra Hospital Southside Clinical Unit, University of Queensland, Brisbane QLD 4102, Australia
| | - Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Clare E. Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Martin Smith
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Chris E. Cooper
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
2
|
Kratimenos P, Vij A, Vidva R, Koutroulis I, Delivoria-Papadopoulos M, Gallo V, Sathyanesan A. Computational analysis of cortical neuronal excitotoxicity in a large animal model of neonatal brain injury. J Neurodev Disord 2022; 14:26. [PMID: 35351004 PMCID: PMC8966144 DOI: 10.1186/s11689-022-09431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neonatal hypoxic brain injury is a major cause of intellectual and developmental disability. Hypoxia causes neuronal dysfunction and death in the developing cerebral cortex due to excitotoxic Ca2+-influx. In the translational piglet model of hypoxic encephalopathy, we have previously shown that hypoxia overactivates Ca2+/Calmodulin (CaM) signaling via Sarcoma (Src) kinase in cortical neurons, resulting in overexpression of proapoptotic genes. However, identifying the exact relationship between alterations in neuronal Ca2+-influx, molecular determinants of cell death, and the degree of hypoxia in a dynamic system represents a significant challenge. METHODS We used experimental and computational methods to identify molecular events critical to the onset of excitotoxicity-induced apoptosis in the cerebral cortex of newborn piglets. We used 2-3-day-old piglets (normoxic [Nx], hypoxic [Hx], and hypoxic + Src-inhibitor-treatment [Hx+PP2] groups) for biochemical analysis of ATP production, Ca2+-influx, and Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) expression. We then used SimBiology to build a computational model of the Ca2+/CaM-Src-kinase signaling cascade, simulating Nx, Hx, and Hx+PP2 conditions. To evaluate our model, we used Sobol variance decomposition, multiparametric global sensitivity analysis, and parameter scanning. RESULTS Our model captures important molecular trends caused by hypoxia in the piglet brain. Incorporating the action of Src kinase inhibitor PP2 further validated our model and enabled predictive analysis of the effect of hypoxia on CaMKK2. We determined the impact of a feedback loop related to Src phosphorylation of NMDA receptors and activation kinetics of CaMKII. We also identified distinct modes of signaling wherein Ca2+ level alterations following Src kinase inhibition may not be a linear predictor of changes in Bax expression. Importantly, our model indicates that while pharmacological pre-treatment significantly reduces the onset of abnormal Ca2+-influx, there exists a window of intervention after hypoxia during which targeted modulation of Src-NMDAR interaction kinetics in combination with PP2 administration can reduce Ca2+-influx and Bax expression to similar levels as pre-treatment. CONCLUSIONS Our model identifies new dynamics of critical components in the Ca2+/CaM-Src signaling pathway leading to neuronal injury and provides a feasible framework for drug efficacy studies in translational models of neonatal brain injury for the prevention of intellectual and developmental disabilities.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,Department of Pediatrics, Division of Neonatology, Children's National Hospital, Washington DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Abhya Vij
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | - Ioannis Koutroulis
- George Washington University School of Medicine and Health Sciences, Washington DC, USA.,Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Research Institute and Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA.,George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
3
|
Htun Y, Nakamura S, Kusaka T. Hydrogen and therapeutic gases for neonatal hypoxic-ischemic encephalopathy: potential neuroprotective adjuncts in translational research. Pediatr Res 2021; 89:753-759. [PMID: 32505123 DOI: 10.1038/s41390-020-0998-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have examined the potential use of therapeutic gases for the treatment of various neurological disorders. Hydrogen gas, a promising neuroprotective agent, has been a focus of study due to its potent antioxidative properties. In translational research into adult diseases, hydrogen has been shown to be neuroprotective in disorders such as cerebral ischemia and traumatic brain injury, and in neurodegenerative diseases such as Alzheimer's disease. Animal and human studies have verified the safety and feasibility of molecular hydrogen. However, despite extensive research on its efficacy in adults, only a few studies have investigated its application in pediatric and neonatal medicine. Neonatal hypoxic-ischemic encephalopathy (HIE) is characterized by damage to neurons and other cells of the nervous system. One of the major contributing factors is excessive exposure to oxidative stress. Current research interest in HIE is shifting toward new neuroprotective agents, as single agents or as adjuncts to therapeutic hypothermia. Here, we review therapeutic gases, particularly hydrogen, and their potentials and limitations in the treatment of HIE in newborns. IMPACT: Translational animal models of neonatal HIE are a current focus of research into the therapeutic usefulness of various gases. Hydrogen ventilation as a single agent or in combination with therapeutic hypothermia shows short- and long-term neuroprotection in neonatal translational HIE models. The optimal target severity for therapeutic interventions should be well established to improve outcomes.
Collapse
Affiliation(s)
- Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Graduate School of Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
4
|
Russell-Buckland J, Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello K, Bainbridge A, Robertson NJ, Tachtsidis I. Systems Biology Model of Cerebral Oxygen Delivery and Metabolism During Therapeutic Hypothermia: Application to the Piglet Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:31-38. [PMID: 33966191 DOI: 10.1007/978-3-030-48238-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypoxic ischaemic encephalopathy (HIE) is a significant cause of death and disability. Therapeutic hypothermia (TH) is the only available standard of treatment, but 45-55% of cases still result in death or neurodevelopmental disability following TH. This work has focussed on developing a new brain tissue physiology and biochemistry systems biology model that includes temperature effects, as well as a Bayesian framework for analysis of model parameter estimation. Through this, we can simulate the effects of temperature on brain tissue oxygen delivery and metabolism, as well as analyse clinical and experimental data to identify mechanisms to explain differing behaviour and outcome. Presented here is an application of the model to data from two piglets treated with TH following hypoxic-ischaemic injury showing different responses and outcome following treatment. We identify the main mechanism for this difference as the Q10 temperature coefficient for metabolic reactions, with the severely injured piglet having a median posterior value of 0.133 as opposed to the mild injury value of 5.48. This work demonstrates the use of systems biology models to investigate underlying mechanisms behind the varying response to hypothermic treatment.
Collapse
Affiliation(s)
- Joshua Russell-Buckland
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - P Kaynezhad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - S Mitra
- Institute for Women's Health, University College London, London, UK
| | - G Bale
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - C Bauer
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - I Lingam
- Institute for Women's Health, University College London, London, UK
| | - C Meehan
- Institute for Women's Health, University College London, London, UK
| | | | - K Martinello
- Institute for Women's Health, University College London, London, UK
| | - A Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - N J Robertson
- Institute for Women's Health, University College London, London, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Developing a Model to Simulate the Effect of Hypothermia on Cerebral Blood Flow and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:299-306. [DOI: 10.1007/978-3-030-34461-0_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Russell-Buckland J, Barnes CP, Tachtsidis I. A Bayesian framework for the analysis of systems biology models of the brain. PLoS Comput Biol 2019; 15:e1006631. [PMID: 31026277 PMCID: PMC6505968 DOI: 10.1371/journal.pcbi.1006631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 02/23/2019] [Indexed: 01/11/2023] Open
Abstract
Systems biology models are used to understand complex biological and physiological systems. Interpretation of these models is an important part of developing this understanding. These models are often fit to experimental data in order to understand how the system has produced various phenomena or behaviour that are seen in the data. In this paper, we have outlined a framework that can be used to perform Bayesian analysis of complex systems biology models. In particular, we have focussed on analysing a systems biology of the brain using both simulated and measured data. By using a combination of sensitivity analysis and approximate Bayesian computation, we have shown that it is possible to obtain distributions of parameters that can better guard against misinterpretation of results, as compared to a maximum likelihood estimate based approach. This is done through analysis of simulated and experimental data. NIRS measurements were simulated using the same simulated systemic input data for the model in a ‘healthy’ and ‘impaired’ state. By analysing both of these datasets, we show that different parameter spaces can be distinguished and compared between different physiological states or conditions. Finally, we analyse experimental data using the new Bayesian framework and the previous maximum likelihood estimate approach, showing that the Bayesian approach provides a more complete understanding of the parameter space. Systems biology models are mathematical representations of biological processes that reproduce the overall behaviour of a biological system. They are comprised by a number of parameters representing biological information. We use them to understand the behaviour of biological systems, such as the brain. We do this by fitting the model’s parameter to observed or simulated data; and by looking at how these values change during the fitting process we investigate the behaviour of our system. We are interested in understanding differences between a healthy and an injured brain. Here we outline a statistical framework that uses a Bayesian approach during the fitting process that can provide us with a distribution of parameters rather than single parameter number. We apply this method when simulating the physiological responses between a healthy and a vascular compromised brain to a drop in oxygenation. We then use experimental data that demonstrates the healthy brain response to an increase in arterial CO2 and fit our brain model predictions to the measurements. In both instances we show that our approach provides more information about the overlap between healthy and unhealthy brain states than a fitting process that provides a single value parameter estimate.
Collapse
Affiliation(s)
- Joshua Russell-Buckland
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
- * E-mail:
| | - Christopher P. Barnes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
7
|
Russell-Buckland J, Caldwell M, Tachtsidis I. WeBCMD: A cross-platform interface for the BCMD modelling framework. Wellcome Open Res 2017; 2:56. [PMID: 28951892 PMCID: PMC5571890 DOI: 10.12688/wellcomeopenres.12201.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 11/24/2022] Open
Abstract
Multimodal monitoring of the brain generates a great quantity of data, providing the potential for great insight into both healthy and injured cerebral dynamics. In particular, near-infrared spectroscopy can be used to measure various physiological variables of interest, such as haemoglobin oxygenation and the redox state of cytochrome-c-oxidase, alongside systemic signals, such as blood pressure. Interpreting these measurements is a complex endeavour, and much work has been done to develop mathematical models that can help to provide understanding of the underlying processes that contribute to the overall dynamics. BCMD is a software framework that was developed to run such models. However, obtaining, installing and running this software is no simple task. Here we present WeBCMD, an online environment that attempts to make the process simpler and much more accessible. By leveraging modern web technologies, an extensible and cross-platform package has been created that can also be accessed remotely from the cloud. WeBCMD is available as a Docker image and an online service.
Collapse
Affiliation(s)
- Joshua Russell-Buckland
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Caldwell M, Moroz T, Hapuarachchi T, Bainbridge A, Robertson NJ, Cooper CE, Tachtsidis I. Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia. PLoS One 2015; 10:e0140171. [PMID: 26445281 PMCID: PMC4596480 DOI: 10.1371/journal.pone.0140171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.
Collapse
Affiliation(s)
- Matthew Caldwell
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Tracy Moroz
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; CoMPLEX, University College London, London, United Kingdom
| | - Tharindi Hapuarachchi
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; CoMPLEX, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London, United Kingdom
| | - Nicola J Robertson
- Insititute for Women's Health, University College London, London, United Kingdom
| | - Chris E Cooper
- Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
9
|
Caldwell M, Hapuarachchi T, Highton D, Elwell C, Smith M, Tachtsidis I. BrainSignals Revisited: Simplifying a Computational Model of Cerebral Physiology. PLoS One 2015; 10:e0126695. [PMID: 25961297 PMCID: PMC4427507 DOI: 10.1371/journal.pone.0126695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Multimodal monitoring of brain state is important both for the investigation of healthy cerebral physiology and to inform clinical decision making in conditions of injury and disease. Near-infrared spectroscopy is an instrument modality that allows non-invasive measurement of several physiological variables of clinical interest, notably haemoglobin oxygenation and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such measurements requires the integration of multiple signals from different sources to try to understand the physiological states giving rise to them. We have previously published several computational models to assist with such interpretation. Like many models in the realm of Systems Biology, these are complex and dependent on many parameters that can be difficult or impossible to measure precisely. Taking one such model, BrainSignals, as a starting point, we have developed several variant models in which specific regions of complexity are substituted with much simpler linear approximations. We demonstrate that model behaviour can be maintained whilst achieving a significant reduction in complexity, provided that the linearity assumptions hold. The simplified models have been tested for applicability with simulated data and experimental data from healthy adults undergoing a hypercapnia challenge, but relevance to different physiological and pathophysiological conditions will require specific testing. In conditions where the simplified models are applicable, their greater efficiency has potential to allow their use at the bedside to help interpret clinical data in near real-time.
Collapse
Affiliation(s)
- Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tharindi Hapuarachchi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - David Highton
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
10
|
Bale G, Oliver-Taylor A, Fierens I, Broad K, Hassell J, Kawano G, Rostami J, Raivich G, Sanders R, Robertson N, Tachtsidis I. Investigation of cerebral autoregulation in the newborn piglet during anaesthesia and surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:165-171. [PMID: 24729229 PMCID: PMC4340574 DOI: 10.1007/978-1-4939-0620-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The relationship between cerebral autoregulation (CA) and the neurotoxic effects of anaesthesia with and without surgery is investigated. Newborn piglets were randomly assigned to receive either 6 h of anaesthesia (isoflurane) or the same with an additional hour of minor surgery. The effect of the spontaneous changes in mean arterial blood pressure (MABP) on the cerebral haemodynamics (oxy- and deoxy-haemoglobin, HbO2 and Hb) was measured using transverse broadband near-infrared spectroscopy (NIRS). A marker for impaired CA, concordance between MABP and intravascular oxygenation (HbD = HbO2 - Hb) in the ultra-low frequency domain (0.0018-0.0083 Hz), was assessed using coherence analysis. Presence of CA impairment was not significant but found to increase with surgical exacerbation. The impairment did not correlate with histological outcome (presence of cell death, apoptosis and microglial activation in the brain).
Collapse
Affiliation(s)
- Gemma Bale
- Biomedical Optics Research Laboratory, University College London, Malet Place Engineering Building, Gower St., London, WC1E6BT, UK.
| | | | - Igor Fierens
- Institute for Women's Health, University College London, London, UK
| | - Kevin Broad
- Institute for Women's Health, University College London, London, UK
| | - Jane Hassell
- Institute for Women's Health, University College London, London, UK
| | - Go Kawano
- Institute for Women's Health, University College London, London, UK
| | - Jamshid Rostami
- Institute for Women's Health, University College London, London, UK
| | - Gennadij Raivich
- Institute for Women's Health, University College London, London, UK
| | - Robert Sanders
- Wellcome Centre for Imaging Neuroscience, University College London, London, UK
| | - Nicola Robertson
- Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- Biomedical Optics Research Laboratory, University College London, Malet Place Engineering Building, Gower St., London, WC1E6BT, UK
| |
Collapse
|
11
|
Bainbridge A, Tachtsidis I, Faulkner SD, Price D, Zhu T, Baer E, Broad KD, Thomas DL, Cady EB, Robertson NJ, Golay X. Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy. Neuroimage 2013; 102 Pt 1:173-83. [PMID: 23959202 PMCID: PMC4229502 DOI: 10.1016/j.neuroimage.2013.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/12/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Multimodal measurements combining broadband near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy ((31)P MRS) assessed associations between changes in the oxidation state of cerebral mitochondrial cytochrome-c-oxidase (Δ[oxCCO]) and (31)P metabolite peak-area ratios during and after transient cerebral hypoxia-ischemia (HI) in the newborn piglet. METHODS Twenty-four piglets (aged<24 h) underwent transient HI (inspired oxygen fraction 9% and bilateral carotid artery occlusion for ~20 min). Whole-brain (31)P MRS and NIRS data were acquired every minute. Inorganic phosphate (Pi)/epp, phosphocreatine (PCr)/epp, and total nucleotide triphosphate (NTP)/epp were measured by (31)P MRS and were plotted against Δ[oxCCO] during HI and recovery (epp=exchangeable phosphate pool=Pi+PCr+2γ-NTP+β-NTP). RESULTS During HI Δ[oxCCO], PCr/epp and NTP/epp declined and Pi/epp increased. Significant correlations were seen between (31)P ratios and Δ[oxCCO]; during HI a threshold point was identified where the relationship between Δ[oxCCO] and both NTP/epp and Pi/epp changed significantly. Outcome at 48 h related to recovery of Δ[oxCCO] and (31)P ratios 1h post-HI (survived: 1-h NTP/epp 0.22 ± 0.02, Δ[oxCCO] -0.29 ± 0.50 μM; died: 1-h NTP/epp 0.10 ± 0.04, Δ[oxCCO] -2.41 ± 1.48 μM). CONCLUSIONS Both lowered Δ[oxCCO] and NTP/epp 1h post-HI indicated mitochondrial impairment. Animals dying before 48 h had slower recovery of both Δ[oxCCO] and (31)P ratios by 1 h after HI.
Collapse
Affiliation(s)
- A Bainbridge
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK.
| | - I Tachtsidis
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - S D Faulkner
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - D Price
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK
| | - T Zhu
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - E Baer
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - K D Broad
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - D L Thomas
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - E B Cady
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK
| | - N J Robertson
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - X Golay
- Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
12
|
Hapuarachchi T, Moroz T, Bainbridge A, Price D, Cady E, Baer E, Broad K, Ezzati M, Thomas D, Golay X, Robertson NJ, Tachtsidis I. Modelling blood flow and metabolism in the piglet brain during hypoxia-ischaemia: simulating pH changes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 789:331-337. [PMID: 23852512 PMCID: PMC4037998 DOI: 10.1007/978-1-4614-7411-1_44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We describe the extension of a computational model of blood flow and metabolism in the piglet brain to investigate changes in neonatal intracellular brain pH during hypoxia-ischemia (HI). The model is able to simulate near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS) measurements obtained from HI experiments conducted in piglets. We adopt a method of using (31)P-MRS data to estimate of intracellular pH and compare measured pH and oxygenation with their modelled counterparts. We show that both NIRS and MRS measurements are predicted well in the new version of the model.
Collapse
Affiliation(s)
| | - Tracy Moroz
- CoMPLEX, University College London, London, UK
| | - Alan Bainbridge
- Medical Physics and Bioengineering, University College London, London, UK
| | - David Price
- Medical Physics and Bioengineering, University College London, London, UK
| | - Ernest Cady
- Medical Physics and Bioengineering, University College London, London, UK
| | - Esther Baer
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Kevin Broad
- Institute for Women's Health, University College London, London, UK
| | - Mojgan Ezzati
- Institute for Women's Health, University College London, London, UK
| | - David Thomas
- Institute of Neurology, University College London, London, UK
| | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | | | - Ilias Tachtsidis
- Department of Medical Physics and Bioengineering, University College London, London, UK
| |
Collapse
|
13
|
Drury PP, Bennet L, Booth LC, Davidson JO, Wassink G, Gunn AJ. Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep. PLoS One 2012; 7:e39273. [PMID: 22720088 PMCID: PMC3376132 DOI: 10.1371/journal.pone.0039273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/22/2012] [Indexed: 12/04/2022] Open
Abstract
Fetal susceptibility to hypoxic brain injury increases over the last third of gestation. This study examined the hypothesis that this is associated with impaired mitochondrial adaptation, as measured by more rapid oxidation of cytochrome oxidase (CytOx) during profound asphyxia. Methods: Chronically instrumented fetal sheep at 0.6, 0.7, and 0.85 gestation were subjected to either 30 min (0.6 gestational age (ga), n = 6), 25 min (0.7 ga, n = 27) or 15 min (0.85 ga, n = 17) of complete umbilical cord occlusion. Fetal EEG, cerebral impedance (to measure brain swelling) and near-infrared spectroscopy-derived intra-cerebral oxygenation (ΔHb = HbO2 – Hb), total hemoglobin (THb) and CytOx redox state were monitored continuously. Occlusion was associated with profound, rapid fall in ΔHb in all groups to a plateau from 6 min, greatest at 0.85 ga compared to 0.6 and 0.7 ga (p<0.05). THb initially increased at all ages, with the greatest rise at 0.85 ga (p<0.05), followed by a progressive fall from 7 min in all groups. CytOx initially increased in all groups with the greatest rise at 0.85 ga (p<0.05), followed by a further, delayed increase in preterm fetuses, but a striking fall in the 0.85 group after 6 min of occlusion. Cerebral impedance (a measure of cytotoxic edema) increased earlier and more rapidly with greater gestation. In conclusion, the more rapid rise in CytOx and cortical impedance during profound asphyxia with greater maturation is consistent with increasing dependence on oxidative metabolism leading to earlier onset of neural energy failure before the onset of systemic hypotension.
Collapse
Affiliation(s)
- Paul P. Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Lindsea C. Booth
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Howard Florey Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne O. Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, Auckland, New Zealand
- * E-mail:
| |
Collapse
|