1
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
2
|
Vittadello ST, Stumpf MPH. Open problems in mathematical biology. Math Biosci 2022; 354:108926. [PMID: 36377100 DOI: 10.1016/j.mbs.2022.108926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Biology is data-rich, and it is equally rich in concepts and hypotheses. Part of trying to understand biological processes and systems is therefore to confront our ideas and hypotheses with data using statistical methods to determine the extent to which our hypotheses agree with reality. But doing so in a systematic way is becoming increasingly challenging as our hypotheses become more detailed, and our data becomes more complex. Mathematical methods are therefore gaining in importance across the life- and biomedical sciences. Mathematical models allow us to test our understanding, make testable predictions about future behaviour, and gain insights into how we can control the behaviour of biological systems. It has been argued that mathematical methods can be of great benefit to biologists to make sense of data. But mathematics and mathematicians are set to benefit equally from considering the often bewildering complexity inherent to living systems. Here we present a small selection of open problems and challenges in mathematical biology. We have chosen these open problems because they are of both biological and mathematical interest.
Collapse
Affiliation(s)
- Sean T Vittadello
- Melbourne Integrative Genomics, University of Melbourne, Australia; School of BioSciences, University of Melbourne, Australia
| | - Michael P H Stumpf
- Melbourne Integrative Genomics, University of Melbourne, Australia; School of BioSciences, University of Melbourne, Australia; School of Mathematics and Statistics, University of Melbourne, Australia.
| |
Collapse
|
3
|
Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 2021; 184:1348-1361.e22. [PMID: 33636128 DOI: 10.1016/j.cell.2021.01.049] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/02/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022]
Abstract
Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.
Collapse
|
4
|
BAILEY LORAD, KOMAROVA NATALIAL. CELLULAR FEEDBACK NETWORKS AND THEIR RESILIENCE AGAINST MUTATIONS. J BIOL SYST 2021. [DOI: 10.1142/s0218339021400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many tissues undergo a steady turnover, where cell divisions are on average balanced with cell deaths. Cell fate decisions such as stem cell (SC) differentiations, proliferations, or differentiated cell (DC) deaths, may be controlled by cell populations through cell-to-cell signaling. Here, we examine a class of mathematical models of turnover in SC lineages to understand engineering design principles of control (feedback) loops, that may operate in such systems. By using ordinary differential equations that describe the co-dynamics of SCs and DCs, we study the effect of different types of mutations that interfere with feedback present within cellular networks. For instance, we find that mutants that do not participate in feedback are less dangerous in the sense that they will not rise from low numbers, whereas mutants that do not respond to feedback signals could rise and replace the wild-type population. Additionally, we asked if different feedback networks can have different degrees of resilience against such mutations. We found that all minimal networks, that is networks consisting of exactly one feedback loop that is sufficient for homeostatic stability of the wild-type population, are equally vulnerable. Mutants with a weakened/eliminated feedback parameter might expand from lower numbers and either enter unlimited growth or reach an equilibrium with an increased number of SCs and DCs. Therefore, from an evolutionary viewpoint, it appears advantageous to combine feedback loops, creating redundant feedback networks. Interestingly, from an engineering prospective, not all such redundant systems are equally resilient. For some of them, any mutation that weakens/eliminates one of the loops will lead to a population growth of SCs. For others, the population of SCs can actually shrink as a result of “cutting” one of the loops, thus slowing down further unwanted transformations.
Collapse
|
5
|
Al Zouabi L, Bardin AJ. Stem Cell DNA Damage and Genome Mutation in the Context of Aging and Cancer Initiation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036210. [PMID: 31932318 DOI: 10.1101/cshperspect.a036210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| |
Collapse
|
6
|
Fendrik AJ, Romanelli L, Rotondo E. Stochastic cell renewal process and lengthening of cell cycle. Phys Biol 2019; 17:016004. [PMID: 31722323 DOI: 10.1088/1478-3975/ab576c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolution of the stem cell population responsible for homeostatic cell renewal processes is analyzed. We assume that this regime is the product of a delicate balance between symmetric divisions that, after each cell cycle, originates a new stem cell or its disappearance (through cell differentiation). This dynamics leads to a monoclonal population, that is for an initial homogeneous set of stem cells, fixation of each clone is equiprobable. In this work we show that if there is an altered stem cell with a longer cell cycle than the rest, the fixation of this altered clone is more likely. We also study the consequeces of the appearance of successive alterations with these characteristics and their fixations. This effect is purely due to inherent characteristics of the cell renewal dynamics and as time goes by it leads to a quiescence state for stem cells owing to the recurrent fixation of such altered cells. Therefore it would contribute to the aging process.
Collapse
Affiliation(s)
- A J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-J.M.Gutierrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas- Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. PLoS Comput Biol 2019; 15:e1006913. [PMID: 31026273 PMCID: PMC6505959 DOI: 10.1371/journal.pcbi.1006913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a recently identified process where older patients accumulate distinct subclones defined by recurring somatic mutations in hematopoietic stem cells. CHIP's implications for stem cell transplantation have been harder to identify due to the high degree of mutational heterogeneity that is present within the genetically distinct subclones. In order to gain a better understanding of CHIP and the impact of clonal dynamics on transplantation outcomes, we created a mathematical model of clonal competition dynamics. Our analyses highlight the importance of understanding competition intensity between healthy and mutant clones. Importantly, we highlight the risk that CHIP poses in leading to dominance of precancerous mutant clones and the risk of donor derived leukemia. Furthermore, we estimate the degree of competition intensity and bone marrow niche decline in mice during aging by using our modeling framework. Together, our work highlights the importance of better characterizing the ecological and clonal composition in hematopoietic donor populations at the time of stem cell transplantation.
Collapse
|
8
|
Zhuge C, Mackey MC, Lei J. Origins of oscillation patterns in cyclical thrombocytopenia. J Theor Biol 2019; 462:432-445. [DOI: 10.1016/j.jtbi.2018.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
9
|
Ross DM, Pagani IS, Shanmuganathan N, Kok CH, Seymour JF, Mills AK, Filshie RJ, Arthur CK, Dang P, Saunders VA, Braley J, Yong AS, Yeung DT, White DL, Grigg AP, Schwarer AP, Branford S, Hughes TP. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia 2018; 32:2572-2579. [PMID: 30315232 DOI: 10.1038/s41375-018-0264-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/28/2023]
Abstract
Following the achievement of deep molecular response on tyrosine kinase inhibitors (TKIs), approximately half of patients with chronic myeloid leukemia (CML) can discontinue TKI and remain in treatment-free remission (TFR). The ALLG CML8 study enrolled 40 imatinib-treated patients with undetectable BCR-ABL1 mRNA (approximately MR4.5). Molecular relapse was defined as detectable BCR-ABL1 on two consecutive tests or any single value >0.1%. With a median follow-up of 8.6 years (range 5.7-11.2 years), 18 patients remain in continuous TFR (45.0%; 95% confidence interval 31.9-63.4%). The latest relapse detected was 27 months after stopping imatinib. No patient progressed to advanced phase. Twenty-two patients met criteria for imatinib re-treatment and all regained undetectable molecular response. Nine patients in long-term TFR were monitored by highly sensitive individualized BCR-ABL1 DNA PCR in a sufficient number of samples to enable more precise quantification of residual leukemia. BCR-ABL1 DNA decreased from a median of MR5.0 in the first year of TFR to MR6.1 in the sixth year of TFR. Our results support the long-term safety and remarkable stability of response after imatinib discontinuation in appropriately selected CML patients. Serial high sensitivity testing provides a new and unexpected finding of gradually reducing CML cells in patients in long-term TFR.
Collapse
Affiliation(s)
- David M Ross
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia. .,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia. .,Flinders University and Medical Centre, Adelaide, Australia. .,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.
| | - Ilaria S Pagani
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | - Naranie Shanmuganathan
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Genetic and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Chung H Kok
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - John F Seymour
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Department of Haematology, Royal Melbourne Hospital and Peter MacCallum Centre, and University of Melbourne, Melbourne, Australia
| | - Anthony K Mills
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Robin J Filshie
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Department of Haematology, St Vincent's Hospital, Melbourne, Australia
| | - Christopher K Arthur
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, Australia
| | - Phuong Dang
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Verity A Saunders
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Jodi Braley
- Genetic and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Agnes S Yong
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | - David T Yeung
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | - Deborah L White
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia.,School of Paediatrics, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Health Sciences UniSA, Adelaide, Australia
| | - Andrew P Grigg
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Department of Clinical Haematology, Austin Hospital and Olivia Newton John Cancer Research Institute, Melbourne, Australia
| | - Anthony P Schwarer
- Australasian Leukaemia and Lymphoma Group, Melbourne, Australia.,Department of Haematology, The Alfred Hospital and Box Hill Hospital, Melbourne, Australia
| | - Susan Branford
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Genetic and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - Timothy P Hughes
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Australasian Leukaemia and Lymphoma Group, Melbourne, Australia
| | | |
Collapse
|
10
|
Situ Q, Lei J. A mathematical model of stem cell regeneration with epigenetic state transitions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1379-1397. [PMID: 29161866 DOI: 10.3934/mbe.2017071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we study a mathematical model of stem cell regeneration with epigenetic state transitions. In the model, the heterogeneity of stem cells is considered through the epigenetic state of each cell, and each epigenetic state defines a subpopulation of stem cells. The dynamics of the subpopulations are modeled by a set of ordinary differential equations in which epigenetic state transition in cell division is given by the transition probability. We present analysis for the existence and linear stability of the equilibrium state. As an example, we apply the model to study the dynamics of state transition in breast cancer stem cells.
Collapse
Affiliation(s)
- Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Mon Père N, Lenaerts T, Pacheco JM, Dingli D. Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria. PLoS Comput Biol 2018; 14:e1006133. [PMID: 29912864 PMCID: PMC6023248 DOI: 10.1371/journal.pcbi.1006133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/28/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder characterized by hemolysis and a high risk of thrombosis, that is due to a deficiency in several cell surface proteins that prevent complement activation. Its origin has been traced to a somatic mutation in the PIG-A gene within hematopoietic stem cells (HSC). However, to date the question of how this mutant clone expands in size to contribute significantly to hematopoiesis remains under debate. One hypothesis posits the existence of a selective advantage of PIG-A mutated cells due to an immune mediated attack on normal HSC, but the evidence supporting this hypothesis is inconclusive. An alternative (and simpler) explanation attributes clonal expansion to neutral drift, in which case selection neither favours nor inhibits expansion of PIG-A mutated HSC. Here we examine the implications of the neutral drift model by numerically evolving a Markov chain for the probabilities of all possible outcomes, and investigate the possible occurrence and evolution, within this framework, of multiple independently arising clones within the HSC pool. Predictions of the model agree well with the known incidence of the disease and average age at diagnosis. Notwithstanding the slight difference in clonal expansion rates between our results and those reported in the literature, our model results lead to a relative stability of clone size when averaging multiple cases, in accord with what has been observed in human trials. The probability of a patient harbouring a second clone in the HSC pool was found to be extremely low ( ~10-8). Thus our results suggest that in clinical cases of PNH where two independent clones of mutant cells are observed, only one of those is likely to have originated in the HSC pool. The mechanisms leading to expansion of HSC with mutations in the PIG-A gene that leads to the PNH phenotype remains unclear. Data so far suggests there is no intrinsic fitness advantage of the mutant cells compared to normal cells. Assuming neutral drift within the HSC compartment, we determined from first principles the incidence of the disease in a population, the average clone size in patients, the probability of clonal extinction, the likelihood of several separate clones coexisting in the HSC pool, and the expected expansion rate of a mutant clone. Our results are similar to what is observed in clinical practice. We also find that in such a model the probability of multiple PNH clones arising independently in the HSC pool is exceptionally small. This suggests that in clinical cases where more than one distinct clone is observed, all but one of the clones are likely to have emerged in cells that are downstream of the HSC population. We propose that PNH is perhaps the first disease where neutral drift alone may be responsible for clonal expansion leading to a clinical problem.
Collapse
Affiliation(s)
- Nathaniel Mon Père
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- MLG, Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- MLG, Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
- AI lab, Computer Science Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jorge M. Pacheco
- Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
- Departamento de Matemática e Aplicações, Universidade do Minho, Braga, Portugal
- ATP-group, Porto Salvo, Portugal
| | - David Dingli
- Division of Hematology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
12
|
Alvarado C, Fider NA, Wearing HJ, Komarova NL. Optimizing homeostatic cell renewal in hierarchical tissues. PLoS Comput Biol 2018; 14:e1005967. [PMID: 29447149 PMCID: PMC5831642 DOI: 10.1371/journal.pcbi.1005967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/28/2018] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
In order to maintain homeostasis, mature cells removed from the top compartment of hierarchical tissues have to be replenished by means of differentiation and self-renewal events happening in the more primitive compartments. As each cell division is associated with a risk of mutation, cell division patterns have to be optimized, in order to minimize or delay the risk of malignancy generation. Here we study this optimization problem, focusing on the role of division tree length, that is, the number of layers of cells activated in response to the loss of terminally differentiated cells, which is related to the balance between differentiation and self-renewal events in the compartments. Using both analytical methods and stochastic simulations in a metapopulation-style model, we find that shorter division trees are advantageous if the objective is to minimize the total number of one-hit mutants in the cell population. Longer division trees on the other hand minimize the accumulation of two-hit mutants, which is a more likely evolutionary goal given the key role played by tumor suppressor genes in cancer initiation. While division tree length is the most important property determining mutant accumulation, we also find that increasing the size of primitive compartments helps to delay two-hit mutant generation. Cells in multicellular organisms are organized hierarchically. A stem cell gives rise to a chain of dividing and progressively differentiating offspring. At the end of this chain (called a lineage) are terminally differentiated cells that perform their function and undergo programmed cell death, to be replaced by new divisions of less differentiated cells. Here we are interested in the design of such lineages. At one extreme, one can imagine that a loss of terminally differentiated cells only results in divisions of cells in close hierarchical proximity to them, giving rise to very short division trees. On the other hand, it is possible that a long chain of increasingly primitive cells gets activated in response to the loss of differentiated cells. We expect that an important type of selection pressure acting upon tissue design is the minimization of mutations that happen in the course of everyday tissue maintenance (homeostasis). For example, tumor suppressor gene inactivation (two consecutive mutations) is an early rate-limiting step in many cancers. Using mathematical and computational methods, we find that the length of division trees is anti-correlated with the likelihood of double mutations, and lengthening the trees may provide an evolutionary advantage to the organism by delaying the onset of cancer.
Collapse
Affiliation(s)
- Cesar Alvarado
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Nicole A. Fider
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Helen J. Wearing
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ashcroft P, Manz MG, Bonhoeffer S. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments. PLoS Comput Biol 2017; 13:e1005803. [PMID: 28991922 PMCID: PMC5654265 DOI: 10.1371/journal.pcbi.1005803] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/19/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells. Clonal hematopoiesis—where mature myeloid cells in the blood deriving from a single stem cell are over-represented—is a major risk factor for overt hematologic malignancies. To quantify how likely this phenomena is, we combine existing observations with a novel stochastic model and extensive mathematical analysis. This approach allows us to observe the hidden dynamics of the hematopoietic system. We conclude that for a clone to be detectable within the lifetime of a mouse, it requires a selective advantage. I.e. the clonal expansion cannot be explained by neutral drift alone. Furthermore, we use our model to describe the dynamics of hematopoiesis after stem cell transplantation. In agreement with earlier findings, we observe that niche-space saturation decreases engraftment efficiency. We further discuss the implications of our findings for human hematopoiesis where the quantity and role of stem cells is frequently debated.
Collapse
Affiliation(s)
- Peter Ashcroft
- Institut für Integrative Biologie, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Markus G. Manz
- Division of Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
14
|
Temko D, Cheng YK, Polyak K, Michor F. Mathematical Modeling Links Pregnancy-Associated Changes and Breast Cancer Risk. Cancer Res 2017; 77:2800-2809. [PMID: 28360138 DOI: 10.1158/0008-5472.can-16-2504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/24/2016] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
Recent debate has concentrated on the contribution of bad luck to cancer development. The tight correlation between the number of tissue-specific stem cell divisions and cancer risk of the same tissue suggests that bad luck has an important role to play in tumor development, but the full extent of this contribution remains an open question. Improved understanding of the interplay between extrinsic and intrinsic factors at the molecular level is one promising route to identifying the limits on extrinsic control of tumor initiation, which is highly relevant to cancer prevention. Here, we use a simple mathematical model to show that recent data on the variation in numbers of breast epithelial cells with progenitor features due to pregnancy are sufficient to explain the known protective effect of full-term pregnancy in early adulthood for estrogen receptor-positive (ER+) breast cancer later in life. Our work provides a mechanism for this previously ill-understood effect and illuminates the complex influence of extrinsic factors at the molecular level in breast cancer. These findings represent an important contribution to the ongoing research into the role of bad luck in human tumorigenesis. Cancer Res; 77(11); 2800-9. ©2017 AACR.
Collapse
Affiliation(s)
- Daniel Temko
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom.,Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yu-Kang Cheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
15
|
MacLean AL, Lo Celso C, Stumpf MP. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis. Stem Cells 2016; 35:80-88. [DOI: 10.1002/stem.2508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Adam L. MacLean
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| | - Michael P.H. Stumpf
- Department of Life Sciences; Imperial College London; South Kensington Campus London United Kingdom
| |
Collapse
|
16
|
Buder T, Deutsch A, Klink B, Voss-Böhme A. Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma. PLoS Comput Biol 2015; 11:e1004662. [PMID: 26658166 PMCID: PMC4675550 DOI: 10.1371/journal.pcbi.1004662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most common brain tumor in children. This tumor is usually benign and has a good prognosis. Total resection is the treatment of choice and will cure the majority of patients. However, often only partial resection is possible due to the location of the tumor. In that case, spontaneous regression, regrowth, or progression to a more aggressive form have been observed. The dependency between the residual tumor size and spontaneous regression is not understood yet. Therefore, the prognosis is largely unpredictable and there is controversy regarding the management of patients for whom complete resection cannot be achieved. Strategies span from pure observation (wait and see) to combinations of surgery, adjuvant chemotherapy, and radiotherapy. Here, we introduce a mathematical model to investigate the growth and progression behavior of PA. In particular, we propose a Markov chain model incorporating cell proliferation and death as well as mutations. Our model analysis shows that the tumor behavior after partial resection is essentially determined by a risk coefficient γ, which can be deduced from epidemiological data about PA. Our results quantitatively predict the regression probability of a partially resected benign PA given the residual tumor size and lead to the hypothesis that this dependency is linear, implying that removing any amount of tumor mass will improve prognosis. This finding stands in contrast to diffuse malignant glioma where an extent of resection threshold has been experimentally shown, below which no benefit for survival is expected. These results have important implications for future therapeutic studies in PA that should include residual tumor volume as a prognostic factor.
Collapse
Affiliation(s)
- Thomas Buder
- Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Technische Universität Dresden, Dresden, Germany
- Fakultät Informatik / Mathematik, Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany
- * E-mail:
| | - Andreas Deutsch
- Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anja Voss-Böhme
- Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Technische Universität Dresden, Dresden, Germany
- Fakultät Informatik / Mathematik, Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany
| |
Collapse
|
17
|
MacLean AL, Kirk PDW, Stumpf MPH. Cellular population dynamics control the robustness of the stem cell niche. Biol Open 2015; 4:1420-6. [PMID: 26453624 PMCID: PMC4728354 DOI: 10.1242/bio.013714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Within populations of cells, fate decisions are controlled by an indeterminate combination of cell-intrinsic and cell-extrinsic factors. In the case of stem cells, the stem cell niche is believed to maintain ‘stemness’ through communication and interactions between the stem cells and one or more other cell-types that contribute to the niche conditions. To investigate the robustness of cell fate decisions in the stem cell hierarchy and the role that the niche plays, we introduce simple mathematical models of stem and progenitor cells, their progeny and their interplay in the niche. These models capture the fundamental processes of proliferation and differentiation and allow us to consider alternative possibilities regarding how niche-mediated signalling feedback regulates the niche dynamics. Generalised stability analysis of these stem cell niche systems enables us to describe the stability properties of each model. We find that although the number of feasible states depends on the model, their probabilities of stability in general do not: stem cell–niche models are stable across a wide range of parameters. We demonstrate that niche-mediated feedback increases the number of stable steady states, and show how distinct cell states have distinct branching characteristics. The ecological feedback and interactions mediated by the stem cell niche thus lend (surprisingly) high levels of robustness to the stem and progenitor cell population dynamics. Furthermore, cell–cell interactions are sufficient for populations of stem cells and their progeny to achieve stability and maintain homeostasis. We show that the robustness of the niche – and hence of the stem cell pool in the niche – depends only weakly, if at all, on the complexity of the niche make-up: simple as well as complicated niche systems are capable of supporting robust and stable stem cell dynamics. Summary: Stem cell niche dynamics are very robust to external and physiological perturbations because proliferation and differentiation are naturally balanced and controlled by the reliance on a shared niche environment.
Collapse
Affiliation(s)
- Adam L MacLean
- Theoretical Systems Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge CB2 0SR, UK
| | - Michael P H Stumpf
- Theoretical Systems Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Tu T, Mason WS, Clouston AD, Shackel NA, McCaughan GW, Yeh MM, Schiff ER, Ruszkiewicz AR, Chen JW, Harley HAJ, Stroeher UH, Jilbert AR. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J Viral Hepat 2015; 22:737-53. [PMID: 25619231 DOI: 10.1111/jvh.12380] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/15/2014] [Indexed: 12/23/2022]
Abstract
Hepatocyte clone size was measured in liver samples of 21 patients in various stages of chronic hepatitis B virus (HBV) infection and from 21 to 76 years of age. Hepatocyte clones containing unique virus-cell DNA junctions formed by the integration of HBV DNA were detected using inverse nested PCR. The maximum hepatocyte clone size tended to increase with age, although there was considerable patient-to-patient variation in each age group. There was an upward trend in maximum clone size with increasing fibrosis, inflammatory activity and with seroconversion from HBV e-antigen (HBeAg)-positive to HBeAg-negative, but these differences did not reach statistical significance. Maximum hepatocyte clone size did not differ between patients with and without a coexisting hepatocellular carcinoma. Thus, large hepatocyte clones containing integrated HBV DNA were detected during all stages of chronic HBV infection. Using laser microdissection, no significant difference in clone size was observed between foci of HBV surface antigen (HBsAg)-positive and HBsAg-negative hepatocytes, suggesting that expression of HBsAg is not a significant factor in clonal expansion. Laser microdissection also revealed that hepatocytes with normal-appearing histology make up a major fraction of the cells undergoing clonal expansion. Thus, preneoplasia does not appear to be a factor in the clonal expansion detected in our assays. Computer simulations suggest that the large hepatocyte clones are not produced by random hepatocyte turnover but have an as-yet-unknown selective advantage that drives increased clonal expansion in the HBV-infected liver.
Collapse
Affiliation(s)
- T Tu
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - W S Mason
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - A D Clouston
- Centre for Liver Disease Research, School of Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, QLD, Australia
| | - N A Shackel
- Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - G W McCaughan
- Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - M M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - E R Schiff
- Schiff Liver Institute and Center for Liver Diseases, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - A R Ruszkiewicz
- Department of Anatomical Pathology and Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - J W Chen
- South Australian Liver Transplant Unit, Flinders Medical Centre, Adelaide, SA, Australia
| | - H A J Harley
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - U H Stroeher
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - A R Jilbert
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Werner B, Gallagher RE, Paietta EM, Litzow MR, Tallman MS, Wiernik PH, Slack JL, Willman CL, Sun Z, Traulsen A, Dingli D. Dynamics of leukemia stem-like cell extinction in acute promyelocytic leukemia. Cancer Res 2014; 74:5386-96. [PMID: 25082816 PMCID: PMC4184925 DOI: 10.1158/0008-5472.can-14-1210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many tumors are believed to be maintained by a small number of cancer stem-like cells, where cure is thought to require eradication of this cell population. In this study, we investigated the dynamics of acute promyelocytic leukemia (APL) before and during therapy with regard to disease initiation, progression, and therapeutic response. This investigation used a mathematical model of hematopoiesis and a dataset derived from the North American Intergroup Study INT0129. The known phenotypic constraints of APL could be explained by a combination of differentiation blockade of PML-RARα-positive cells and suppression of normal hematopoiesis. All-trans retinoic acid (ATRA) neutralizes the differentiation block and decreases the proliferation rate of leukemic stem cells in vivo. Prolonged ATRA treatment after chemotherapy can cure patients with APL by eliminating the stem-like cell population over the course of approximately one year. To our knowledge, this study offers the first estimate of the average duration of therapy that is required to eliminate stem-like cancer cells from a human tumor, with the potential for the refinement of treatment strategies to better manage human malignancy.
Collapse
Affiliation(s)
- Benjamin Werner
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - James L Slack
- Division of Hematology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | - Zhuoxin Sun
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Dingli
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
20
|
Holmes WR, Nie Q. Interactions and tradeoffs between cell recruitment, proliferation, and differentiation affect CNS regeneration. Biophys J 2014; 106:1528-36. [PMID: 24703314 DOI: 10.1016/j.bpj.2014.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
Regeneration of central nervous system (CNS) lesions requires movement of progenitor cells and production of their differentiated progeny. Although damage to the CNS clearly promotes these two processes, the interplay between these complex events and how it affects a response remains elusive. Here, we use spatial stochastic modeling to show that tradeoffs arise between production and recruitment during regeneration. Proper spatial control of cell cycle timing can mitigate these tradeoffs, maximizing recruitment, improving infiltration into the lesion, and reducing wasteful production outside of it. Feedback regulation of cell lineage dynamics alone however leads to spatial defects in cell recruitment, suggesting a novel, to our knowledge, hypothesis for the aggregation of cells to the periphery of a lesion in multiple sclerosis. Interestingly, stronger chemotaxis does not correct this aggregation and instead, substantial random cell motions near the site of the lesion are required to improve CNS regeneration.
Collapse
Affiliation(s)
- William R Holmes
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California
| | - Qing Nie
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California.
| |
Collapse
|
21
|
Sánchez-Taltavull D, Alarcón T. Robustness of differentiation cascades with symmetric stem cell division. J R Soc Interface 2014; 11:20140264. [PMID: 24718457 DOI: 10.1098/rsif.2014.0264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cells (SCs) perform the task of maintaining tissue homeostasis by both self-renewal and differentiation. While it has been argued that SCs divide asymmetrically, there is also evidence that SCs undergo symmetric division. Symmetric SC division has been speculated to be key for expanding cell numbers in development and regeneration after injury. However, it might lead to uncontrolled growth and malignancies such as cancer. In order to explore the role of symmetric SC division, we propose a mathematical model of the effect of symmetric SC division on the robustness of a population regulated by a serial differentiation cascade and we show that this may lead to extinction of such population. We examine how the extinction likelihood depends on defining characteristics of the population such as the number of intermediate cell compartments. We show that longer differentiation cascades are more prone to extinction than systems with less intermediate compartments. Furthermore, we have analysed the possibility of mixed symmetric and asymmetric cell division against invasions by mutant invaders in order to find optimal architecture. Our results show that more robust populations are those with unfrequent symmetric behaviour.
Collapse
Affiliation(s)
- Daniel Sánchez-Taltavull
- Centre de Recerca Matemàtica, , Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain
| | | |
Collapse
|
22
|
Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci U S A 2014; 111:E880-7. [PMID: 24501127 DOI: 10.1073/pnas.1324267111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states.
Collapse
|
23
|
Abstract
A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size.
Collapse
|
24
|
Werner B, Dingli D, Traulsen A. A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues. J R Soc Interface 2013; 10:20130349. [PMID: 23740488 PMCID: PMC4043170 DOI: 10.1098/rsif.2013.0349] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancers are rarely caused by single mutations, but often develop as a result of the combined effects of multiple mutations. For most cells, the number of possible cell divisions is limited because of various biological constraints, such as progressive telomere shortening, cell senescence cascades or a hierarchically organized tissue structure. Thus, the risk of accumulating cells carrying multiple mutations is low. Nonetheless, many diseases are based on the accumulation of such multiple mutations. We model a general, hierarchically organized tissue by a multi-compartment approach, allowing any number of mutations within a cell. We derive closed solutions for the deterministic clonal dynamics and the reproductive capacity of single clones. Our results hold for the average dynamics in a hierarchical tissue characterized by an arbitrary combination of proliferation parameters. We show that hierarchically organized tissues strongly suppress cells carrying multiple mutations and derive closed solutions for the expected size and diversity of clonal populations founded by a single mutant within the hierarchy. We discuss the example of childhood acute lymphoblastic leukaemia in detail and find good agreement between our predicted results and recently observed clonal diversities in patients. This result can contribute to the explanation of very diverse mutation profiles observed by whole genome sequencing of many different cancers.
Collapse
Affiliation(s)
- Benjamin Werner
- Evolutionary Theory Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | |
Collapse
|