1
|
Latham B, Reid A, Jackson-Camargo JC, Williams JA, Windmill JFC. Coupled membranes: a mechanism of frequency filtering and transmission in the field cricket ear evidenced by micro-computed tomography, laser Doppler vibrometry and finite element analysis. J R Soc Interface 2024; 21:20230779. [PMID: 38903010 DOI: 10.1098/rsif.2023.0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Many animals employ a second frequency filter beyond the initial filtering of the eardrum (or tympanal membrane). In the field cricket ear, both the filtering mechanism and the transmission path from the posterior tympanal membrane (PTM) have remained unclear. A mismatch between PTM vibrations and sensilla tuning has prompted speculations of a second filter. PTM coupling to the tracheal branches is suggested to support a transmission pathway. Here, we present three independent lines of evidence converging on the same conclusion: the existence of a series of linked membranes with distinct resonant frequencies serving both filtering and transmission functions. Micro-computed tomography (µ-CT) highlighted the 'dividing membrane (DivM)', separating the tracheal branches and connected to the PTM via the dorsal membrane of the posterior tracheal branch (DM-PTB). Thickness analysis showed the DivM to share significant thinness similarity with the PTM. Laser Doppler vibrometry indicated the first of two PTM vibrational peaks, at 6 and 14 kHz, originates not from the PTM but from the coupled DM-PTB. This result was corroborated by µ-CT-based finite element analysis. These findings clarify further the biophysical source of neuroethological pathways in what is an important model of behavioural neuroscience. Tuned microscale coupled membranes may also hold biomimetic relevance.
Collapse
Affiliation(s)
- Brendan Latham
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Andrew Reid
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Joseph C Jackson-Camargo
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Jonathan A Williams
- Department of Biomedical Engineering, University of Strathclyde , Glasgow, UK
| | - James F C Windmill
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| |
Collapse
|
2
|
Austin TT, Woodrow C, Pinchin J, Montealegre-Z F, Warren B. Effects of age and noise on tympanal displacement in the Desert Locust. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104595. [PMID: 38052320 DOI: 10.1016/j.jinsphys.2023.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.
Collapse
Affiliation(s)
- Thomas T Austin
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Charlie Woodrow
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, UK
| | - James Pinchin
- Faculty of Engineering, University of Nottingham, University Park, Nottinghamshire NG7 2RD, UK
| | - Fernando Montealegre-Z
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, UK
| | - Ben Warren
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
3
|
How does prestrain in the tympanic membrane affect middle-ear function? A finite-element model study in rabbit. J Mech Behav Biomed Mater 2022; 131:105261. [DOI: 10.1016/j.jmbbm.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
|
4
|
Livens P, Muyshondt PGG, Dirckx JJJ. Prestrain in the rabbit eardrum measured by digital image correlation and micro-incisions. Hear Res 2021; 412:108392. [PMID: 34800801 DOI: 10.1016/j.heares.2021.108392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Prestrain in the absence of external loads can have an important effect on the vibrational behavior of mechanical systems such as the middle ear. Studies that measure tympanic membrane (TM) prestrain are scarce, however, and provide no conclusive answer on the existence and nature of the prestrain. In this study, prestrain is measured in the TM of cadaveric rabbit ears by stereo digital image correlation. To release the prestrain, straight incisions of 0.33 mm are made on different locations in the TM with a direction parallel to either the radial or circular fibers in the membrane. The effect of sample dehydration during different stages in the experimental procedure is assessed and eliminated by rehydrating the samples directly before each measurement. The measurements demonstrate average prestrain values around the incisions between 3.52±2.34% and 13.62±7.92% for the different locations, with a noise floor of 0.07%. No clear differences were found between the prestrain values obtained for radial and circular incisions. Observed local variations in TM prestrain could not be clearly related to specific locations on the TM. The results suggest that TM prestrain may need to be considered in future studies of middle-ear function if the findings can be confirmed in human ears.
Collapse
Affiliation(s)
- Pieter Livens
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Pieter G G Muyshondt
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joris J J Dirckx
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
5
|
Warren B, Nowotny M. Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects must wonder why mammals have ears only in their head and why they evolved only one common principle of ear design—the cochlea. Ears independently evolved at least 19 times in different insect groups and therefore can be found in completely different body parts. The morphologies and functional characteristics of insect ears are as wildly diverse as the ecological niches they exploit. In both, insects and mammals, hearing organs are constrained by the same biophysical principles and their respective molecular processes for mechanotransduction are thought to share a common evolutionary origin. Due to this, comparative knowledge of hearing across animal phyla provides crucial insight into fundamental processes of auditory transduction, especially at the biomechanical and molecular level. This review will start by comparing hearing between insects and mammals in an evolutionary context. It will then discuss current findings about sound reception will help to bridge the gap between both research fields.
Collapse
|
6
|
Saltin BD, Matsumura Y, Reid A, Windmill JF, Gorb SN, Jackson JC. Material stiffness variation in mosquito antennae. J R Soc Interface 2019; 16:20190049. [PMID: 31088259 PMCID: PMC6544878 DOI: 10.1098/rsif.2019.0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
The antennae of mosquitoes are model systems for acoustic sensation, in that they obey general principles for sound detection, using both active feedback mechanisms and passive structural adaptations. However, the biomechanical aspect of the antennal structure is much less understood than the mechano-electrical transduction. Using confocal laser scanning microscopy, we measured the fluorescent properties of the antennae of two species of mosquito- Toxorhynchites brevipalpis and Anopheles arabiensis-and, noting that fluorescence is correlated with material stiffness, we found that the structure of the antenna is not a simple beam of homogeneous material, but is in fact a rather more complex structure with spatially distributed discrete changes in material properties. These present as bands or rings of different material in each subunit of the antenna, which repeat along its length. While these structures may simply be required for structural robustness of the antennae, we found that in FEM simulation, these banded structures can strongly affect the resonant frequencies of cantilever-beam systems, and therefore taken together our results suggest that modulating the material properties along the length of the antenna could constitute an additional mechanism for resonant tuning in these species.
Collapse
Affiliation(s)
- B. D. Saltin
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - Y. Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - A. Reid
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - J. F. Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - S. N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - J. C. Jackson
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| |
Collapse
|
7
|
Jonsson T, Chivers BD, Robson Brown K, Sarria-S FA, Walker M, Montealegre-Z F. Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae). ACTA ACUST UNITED AC 2017; 220:2900-2907. [PMID: 28596213 DOI: 10.1242/jeb.160234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/29/2017] [Indexed: 11/20/2022]
Abstract
Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta, a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system.
Collapse
Affiliation(s)
- Thorin Jonsson
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Benedict D Chivers
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Kate Robson Brown
- Imaging Laboratory, Department of Anthropology and Archaeology, University of Bristol, 43 Woodland Road, Bristol BS8 1UG, UK
| | - Fabio A Sarria-S
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Matthew Walker
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | | |
Collapse
|
8
|
Hummel J, Kössl M, Nowotny M. Morphological basis for a tonotopic design of an insect ear. J Comp Neurol 2017; 525:2443-2455. [PMID: 28369996 DOI: 10.1002/cne.24218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 11/11/2022]
Abstract
The tonotopically organized hearing organs of bushcrickets provide the opportunity for a detailed correlation of morphological and structural properties within hearing organs that are needed to establish tonotopic gradients. In the present study of a tonotopic insect hearing organ, we combine mechanical measurements of sound-induced hearing organ motion and detailed anatomical investigations to explore the anatomical basis of tonotopy. We compare mechanical data of frequency responses along the auditory organ to several anatomical parameters. Low frequency responses are related to larger organ and cap cell size in the proximal part of the hearing organ while in the distal part of the organ, small organ and cap cell size is related to high-frequency representation. However, the correlation between organ and cap cell size with continuous frequency representation along the organ is not very tight. Instead, the height of the organ and the corresponding length of the sensory dendrites are best correlated to tonotopic frequency representation. The sensory dendrite contains a ciliary root with a pronounced cross-banding of electron-dense material that should be important for the stiffness of the dendrite. The geometry of surrounding structures like the hemolymph channel and the acoustic trachea as well as the extension of the tectorial membrane are not correlated to the tonotopy. We provide evidence that tonotopy in the bushcricket hearing organ may depend on the size of ciliary structures. In particular, the ciliary root of the sensory cells is a likely cellular basis of tonotopy.
Collapse
Affiliation(s)
- Jennifer Hummel
- Department of Neurobiology and Biosensors, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manfred Kössl
- Department of Neurobiology and Biosensors, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Department of Neurobiology and Biosensors, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Gordon SD, Windmill JFC. Hearing ability decreases in ageing locusts. ACTA ACUST UNITED AC 2015; 218:1990-4. [PMID: 25944922 DOI: 10.1242/jeb.115113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Insects display signs of ageing, despite their short lifespan. However, the limited studies on senescence emphasize longevity or reproduction. We focused on the hearing ability of ageing adult locusts, Schistocerca gregaria. Our results indicate that the youngest adults (2 weeks post-maturity) have a greater overall neurophysiological response to sound, especially for low frequencies (<10 kHz), as well as a shorter latency to this neural response. Interestingly, when measuring displacement of the tympanal membrane that the receptor neurons directly attach to, we found movement is not directly correlated with neural response. Therefore, we suggest the enhanced response in younger animals is due to the condition of their tissues (e.g. elasticity). Secondly, we found the sexes do not have the same responses, particularly at 4 weeks post-adult moult. We propose female reproductive condition reduces their ability to receive sounds. Overall our results indicate older animals, especially females, are less sensitive to sounds.
Collapse
Affiliation(s)
- Shira D Gordon
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| |
Collapse
|
10
|
Mhatre N. Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:19-37. [PMID: 25502323 DOI: 10.1007/s00359-014-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022]
Abstract
Active amplification in auditory systems is a unique and sophisticated mechanism that expends energy in amplifying the mechanical input to the auditory system, to increase its sensitivity and acuity. Although known for decades from vertebrates, active auditory amplification was only discovered in insects relatively recently. It was first discovered from two dipterans, mosquitoes and flies, who hear with their light and compliant antennae; only recently has it been observed in the stiffer and heavier tympanal ears of an orthopteran. The discovery of active amplification in two distinct insect lineages with independently evolved ears, suggests that the trait may be ancestral, and other insects may possess it as well. This opens up extensive research possibilities in the field of acoustic communication, not just in auditory biophysics, but also in behaviour and neurobiology. The scope of this review is to establish benchmarks for identifying the presence of active amplification in an auditory system and to review the evidence we currently have from different insect ears. I also review some of the models that have been posited to explain the mechanism, both from vertebrates and insects and then review the current mechanical, neurobiological and genetic evidence for each of these models.
Collapse
Affiliation(s)
- Natasha Mhatre
- School of Biological Sciences, University of Bristol, Woodland road, Bristol, BS8 1UG, UK,
| |
Collapse
|