1
|
Büscher TH, Gorb SN, Eberhard MJB. Diversity of attachment systems in heelwalkers (Mantophasmatodea) - highly specialized, but uniform. BMC Ecol Evol 2024; 24:130. [PMID: 39455927 PMCID: PMC11515392 DOI: 10.1186/s12862-024-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Heelwalkers possess a highly modified tarsal attachment system. All extant species lift the distalmost tarsomere permanently off the substrate and primarily use their euplantulae for locomotion. The combination of a smooth adhesive pad (arolium) on the pretarsus and fibrillary attachment pads on the euplantulae offers valuable insights for translational approaches, but its infra-order diversity remains unexplored. RESULTS We explored the morphology of the tarsal attachment apparatus of Mantophasmatodea based on a representative taxon sampling spanning a large fraction of species of this group and compared morphological differences in the specialized morphology of this system across species and sexes. Our scanning electron microscope investigation of the tarsi of 11 species (52% of all described extant species) revealed an overall very consistent ground pattern and almost no specific adaptations. There are only minor, but mostly clade-specific differences in the shape of the adhesive setae on the tarsal euplantulae and in the morphology and density of the acanthae on the pretarsal arolium. Both features differ primarily between Austrophasmatidae in comparison to the remaining Mantophasmatodea taxa. CONCLUSION We conclude that the strong specialization of the mantophasmatodean tarsal attachment sufficiently copes with the diversity of substrates the insects are exposed to.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Monika J B Eberhard
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
2
|
Thomas J, Gorb SN, Büscher TH. Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:612-630. [PMID: 38887530 PMCID: PMC11181264 DOI: 10.3762/bjnano.15.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The mechanism by which insects achieve attachment and locomotion across diverse substrates has long intrigued scientists, prompting extensive research on the functional morphology of attachment pads. In stick insects, attachment and locomotion are facilitated by two distinct types of smooth cuticular attachment pads: the primary adhesion force-generating arolium and the friction force-generating euplantulae. They are both supported by an adhesive secretion delivered into the interspace between the attachment pads and the substrate. In this study, we analysed and compared internal morphology, material composition and ultrastructure, as well as the transportation pathways in both adhesive organs in the stick insect Medauroidea extradentata using scanning electron microscopy, micro-computed tomography, light microscopy, and confocal laser scanning microscopy. Our observations revealed structural differences between both attachment pads, reflecting their distinct functionality. Furthermore, our results delineate a potential pathway for adhesive secretions, originating from exocrine epidermal cells and traversing various layers before reaching the surface. Within the attachment pad, the fluid may influence the viscoelastic properties of the pad and control the attachment/detachment process. Understanding the material composition of attachment pads and the distribution process of the adhesive secretion can potentially aid in the development of more effective artificial attachment systems.
Collapse
Affiliation(s)
- Julian Thomas
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
3
|
Thomas J, Gorb SN, Büscher TH. Characterization of Morphologically Distinct Components in the Tarsal Secretion of Medauroidea extradentata (Phasmatodea) Using Cryo-Scanning Electron Microscopy. Biomimetics (Basel) 2023; 8:439. [PMID: 37754190 PMCID: PMC10526352 DOI: 10.3390/biomimetics8050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Attachment to the substrate is an important phenomenon that determines the survival of many organisms. Most insects utilize wet adhesion to support attachment, which is characterized by fluids that are secreted into the interface between the tarsus and the substrates. Previous research has investigated the composition and function of tarsal secretions of different insect groups, showing that the secretions are likely viscous emulsions that contribute to attachment by generating capillary and viscous adhesion, leveling surface roughness and providing self-cleaning of the adhesive systems. Details of the structural organization of these secretions are, however, largely unknown. Here, we analyzed footprints originating from the arolium and euplantulae of the stick insect Medauroidea extradentata using cryo-scanning electron microscopy (cryo-SEM) and white light interferometry (WLI). The secretion was investigated with cryo-SEM, revealing four morphologically distinguishable components. The 3D WLI measurements of the droplet shapes and volumes over time revealed distinctly different evaporation rates for different types of droplets. Our results indicate that the subfunctionalization of the tarsal secretion is facilitated by morphologically distinct components, which are likely a result of different proportions of components within the emulsion. Understanding these components and their functions may aid in gaining insights for developing adaptive and multifunctional biomimetic adhesive systems.
Collapse
Affiliation(s)
- Julian Thomas
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany; (S.N.G.); (T.H.B.)
| | | | | |
Collapse
|
4
|
Winand J, Gorb SN, Büscher TH. Gripping performance in the stick insect Sungaya inexpectata in dependence on the pretarsal architecture. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:313-323. [PMID: 36152036 PMCID: PMC10006028 DOI: 10.1007/s00359-022-01570-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Insect attachment devices and capabilities have been subject to research efforts for decades, and even though during that time considerable progress has been made, numerous questions remain. Different types of attachment devices are known, alongside most of their working principles, however, some details have yet to be understood. For instance, it is not clear why insects for the most part developed pairs of claws, instead of either three or a single one. In this paper, we investigated the gripping forces generated by the stick insect Sungaya inexpectata, in dependence on the number of available claws. The gripping force experiments were carried out on multiple, standardized substrates of known roughness, and conducted in directions both perpendicular and parallel to the substrate. This was repeated two times: first with a single claw being amputated from each of the animals' legs, then with both claws removed, prior to the measurement. The adhesive pads (arolia) and frictional pads (euplantulae) remained intact. It was discovered that the removal of claws had a detractive effect on the gripping forces in both directions, and on all substrates. Notably, this also included the control of smooth surfaces on which the claws were unable to find any asperities to grip on. The results show that there is a direct connection between the adhesive performance of the distal adhesive pad (arolium) and the presence of intact claws. These observations show collective effects between different attachment devices that work in concert during locomotion, and grant insight into why most insects possess two claws.
Collapse
Affiliation(s)
- Julian Winand
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Thies H. Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Thomas J, Gorb SN, Büscher TH. Influence of surface free energy of the substrate and flooded water on the attachment performance of stick insects (Phasmatodea) with different adhesive surface microstructures. J Exp Biol 2023; 226:286279. [PMID: 36606728 DOI: 10.1242/jeb.244295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Stick and leaf insects (Phasmatodea) are exclusively herbivores. As they settle in a broad range of habitats, they need to attach to and walk on a wide variety of plant substrates, which can vary in their surface free energy (SFE). The adhesive microstructures (AMs) on the euplantulae of phasmids are assumed to be adapted to such substrate properties. Moreover, the natural substrates can often be covered with water as a result of high relative humidity or rain. Although considerable experimental research has been carried out on different aspects of stick insect attachment, the adaptations to cope with the influence of flooded water on attachment performance remain unclear. To elucidate the role of AMs in this context, we here measured attachment forces in three species of stick insects with different AMs. The results show that attachment forces of the three species studied were influenced by the SFE and the presence of water: they all showed higher pull-off (vertical) and traction (horizontal) forces on dry surfaces, compared with when the surfaces were covered with a water film. However, the extent to which the surface properties influenced attachment differed depending on the species and its AMs. All three species showed approximately the same attachment performance on dry surfaces with different surface free energy but maintained attachment underwater to different extents.
Collapse
Affiliation(s)
- Julian Thomas
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Büscher TH, Gorb SN. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:725-743. [PMID: 34354900 PMCID: PMC8290099 DOI: 10.3762/bjnano.12.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
7
|
Büscher TH, Becker M, Gorb SN. Attachment performance of stick insects (Phasmatodea) on convex substrates. J Exp Biol 2020; 223:jeb226514. [PMID: 32723763 DOI: 10.1242/jeb.226514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Phasmatodea (stick and leaf insects) are herbivorous insects well camouflaged on plant substrates as a result of cryptic masquerade. Also, their close association with plants has allowed them to adapt to different substrate geometries and surface topographies of the plants they imitate. Stick insects are gaining increasing attention in attachment- and locomotion-focused research. However, most studies experimentally investigating stick insect attachment have been performed either on single attachment pads or on flat surfaces. In contrast, curved surfaces, especially twigs or stems of plants, are dominant substrates for phytophagous insects, but not much is known about the influence of curvature on their attachment. In this study, by combining analysis of tarsal usage with mechanical traction and pull-off force measurements, we investigated the attachment performance on curved substrates with different diameters in two species of stick insects with different tarsal lengths. We provide the first quantitative data for forces generated by stick insects on convex curved substrates and show that the curvature significantly influences attachment ability in both species. Within the studied range of substrate curvatures, traction force decreases and pull-off force increases with increasing curvature. Shorter tarsi demonstrate reduced forces; however, tarsus length only has an influence for diameters thinner than the tarsal length. The attachment force generally depends on the number of tarsi/tarsomeres in contact, tarsus/leg orientation and body posture on the surface. Pull-off force is also influenced by the tibiotarsal angle, with higher pull-off force for lower angles, while traction force is mainly influenced by load, i.e. adduction force.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Martin Becker
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
8
|
Kang V, Johnston R, van de Kamp T, Faragó T, Federle W. Morphology of powerful suction organs from blepharicerid larvae living in raging torrents. BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0049-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Suction organs provide powerful yet dynamic attachments for many aquatic animals, including octopus, squid, remora, and clingfish. While the functional morphology of suction organs from some cephalopods and fishes has been investigated in detail, there are only few studies on such attachment devices in insects. Here we characterise the morphology and ultrastructure of the suction attachment organs of net-winged midge larvae (genus Liponeura; Diptera: Blephariceridae) – aquatic insects that live on rocks in rapid alpine waterways where flow speeds can reach 3 m s− 1 – using scanning electron microscopy, confocal laser scanning microscopy, and X-ray computed micro-tomography (micro-CT). Furthermore, we study the function of these organs in vivo using interference reflection microscopy.
Results
We identified structural adaptations important for the function of the suction attachment organs in L. cinerascens and L. cordata. First, a dense array of spine-like microtrichia covering each suction disc comes into contact with the substrate upon attachment, analogous to hairy structures on suction organs from octopus, clingfish, and remora fish. These spine-like microtrichia may contribute to the seal and provide increased shear force resistance in high-drag environments. Second, specialised rim microtrichia at the suction disc periphery were found to form a continuous ring in close contact and may serve as a seal on a variety of surfaces. Third, a V-shaped cut on the suction disc (“V-notch“) is actively opened via two cuticular apodemes inserting on its flanks. The apodemes are attached to dedicated V-notch opening muscles, thereby providing a unique detachment mechanism. The complex cuticular design of the suction organs, along with specialised muscles that attach to them, allows blepharicerid larvae to generate powerful attachments which can withstand strong hydrodynamic forces and quickly detach for locomotion.
Conclusion
The suction organs from Liponeura are underwater attachment devices specialised for resisting extremely fast flows. Structural adaptations from these suction organs could translate into future bioinspired attachment systems that perform well on a wide range of surfaces.
Collapse
|
9
|
Büscher TH, Gorb SN. Complementary effect of attachment devices in stick insects (Phasmatodea). ACTA ACUST UNITED AC 2019; 222:jeb.209833. [PMID: 31727762 DOI: 10.1242/jeb.209833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
Stick insects are well adapted in their locomotion to various surfaces and topographies of natural substrates. Single pad measurements characterised the pretarsal arolia of these insects as shear-sensitive adhesive pads and the tarsal euplantulae as load-sensitive friction pads. Different attachment microstructures on the euplantulae reveal an adaptation of smooth euplantulae to smooth surfaces and nubby eupantulae to a broader range of surface roughness. However, how different attachment pads and claws work in concert and how strong the contribution of different structures is to the overall attachment performance remains unclear. We therefore assessed combinatory effects in the attachment system of two stick insect species with different types of euplantular microstructures by analysing their usage in various posture situations and the performance on different levels of substrate roughness. For comparison, we provide attachment force data of the whole attachment system. The combination of claws, arolia and euplantulae provides mechanical interlocking on rough surfaces, adhesion and friction on smooth surfaces in different directions, and facilitates attachment on different inclines and on a broad range of surface roughness, with the least performance in the range 0.3-1.0 µm. On smooth surfaces, stick insects use arolia always, but employ euplantulae if the body weight can generate load on them (upright, wall). On structured surfaces, claws enable mechanical interlocking at roughnesses higher than 12 µm. On less-structured surfaces, the attachment strength depends on the use of pads and, corroborating earlier studies, favours smooth pads on smooth surfaces, but nubby euplantulae on micro-rough surfaces.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
10
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
11
|
Büscher TH, Kryuchkov M, Katanaev VL, Gorb SN. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J R Soc Interface 2019; 15:rsif.2018.0281. [PMID: 29925583 DOI: 10.1098/rsif.2018.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
In its evolution, the diverse group of stick and leaf insects (Phasmatodea) has undergone a rapid radiation. These insects evolved specialized structures to adhere to different surfaces typical for their specific ecological environments. The cuticle of their tarsal attachment pads (euplantulae) is known to possess a high diversity of attachment microstructures (AMS) which are suggested to reflect ecological specializations of different groups within phasmids. However, the origin of these microstructures and their developmental background remain largely unknown. Here, based on the detailed scanning electron microscopy study of pad surfaces, we present a theoretical approach to mathematically model an outstanding diversity of phasmid AMS using the reaction-diffusion model by Alan Turing. In general, this model explains pattern formation in nature. For the first time, we were able to identify eight principal patterns and simulate the transitions among these. In addition, intermediate transitional patterns were predicted by the model. The ease of transformation suggests a high adaptability of the microstructures that might explain the rapid evolution of pad characters. We additionally discuss the functional morphology of the different microstructures and their assumed advantages in the context of the ecological background of species.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
12
|
Roderick WRT, Chin DD, Cutkosky MR, Lentink D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife 2019; 8:e46415. [PMID: 31385573 PMCID: PMC6684272 DOI: 10.7554/elife.46415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/30/2019] [Indexed: 11/13/2022] Open
Abstract
Birds land on a wide range of complex surfaces, yet it is unclear how they grasp a perch reliably. Here, we show how Pacific parrotlets exhibit stereotyped leg and wing dynamics regardless of perch diameter and texture, but foot, toe, and claw kinematics become surface-specific upon touchdown. A new dynamic grasping model, which integrates our detailed measurements, reveals how birds stabilize their grasp. They combine predictable toe pad friction with probabilistic friction from their claws, which they drag to find surface asperities-dragging further when they can squeeze less. Remarkably, parrotlet claws can undergo superfast movements, within 1-2 ms, on moderately slippery surfaces to find more secure asperities when necessary. With this strategy, they first ramp up safety margins by squeezing before relaxing their grasp. The model further shows it is advantageous to be small for stable perching when high friction relative to normal force is required because claws can find more usable surface, but this trend reverses when required friction shrinks. This explains how many animals and robots may grasp complex surfaces reliably.
Collapse
Affiliation(s)
- William RT Roderick
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Diana D Chin
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Mark R Cutkosky
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - David Lentink
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| |
Collapse
|
13
|
Ma S, Scaraggi M, Yan C, Wang X, Gorb SN, Dini D, Zhou F. Bioinspired 3D Printed Locomotion Devices Based on Anisotropic Friction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1802931. [PMID: 30444553 DOI: 10.1002/smll.201802931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Anisotropic friction plays a key role in natural systems, particularly for realizing the purpose of locomotion and strong attachment for the survival of organisms. Of particular interest, here, is the observation that friction anisotropy is promoted numerous times by nature, for example, by wild wheat awn for its targeted and successful seed anchorage and dispersal. Such feature is, however, not fully exploited in man-made systems, such as microbots, due to technical limitations and lack of full understanding of the mechanisms. To unravel the complex dynamics occurring in the sliding interaction between anisotropic microstructured surfaces, the friction induced by asymmetric plant microstructures is first systematically investigated. Inspired by this, anisotropic polymer microactuators with three-dimensional (3D) printed microrelieves are then prepared. By varying geometric parameters, the capability of microactuators to generate strong friction anisotropy and controllable motion in remotely stretched cylindrical tubes is investigated. Advanced theoretical models are proposed to understand and predict the dynamic behavior of these synthetic systems and to shed light on the parameters and mechanisms governing their behavior. Finally, a microbot prototype is developed and cargo transportation functions are successfully realized. This research provides both in-depth understanding of anisotropic friction in nature and new avenues for developing intelligent actuators and microbots.
Collapse
Affiliation(s)
- Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Michele Scaraggi
- Department of Engineering for Innovation, Universitá del Salento, 73100 Monteroni-Lecce, Italy
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Changyou Yan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
14
|
Pattrick JG, Labonte D, Federle W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. ACTA ACUST UNITED AC 2018; 221:jeb.188391. [PMID: 30352819 DOI: 10.1242/jeb.188391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022]
Abstract
Claws are the most widespread attachment devices in animals, but comparatively little is known about the mechanics of claw attachment. A key morphological parameter in determining attachment ability is claw sharpness; however, there is a conflict between sharpness and fracture resistance. Sharper claws can interlock on more surfaces but are more likely to break. Body size interacts with this conflict such that larger animals should have much blunter claws and consequently poorer attachment ability than smaller animals. This expected size-induced reduction in attachment performance has not previously been investigated, and it is unclear how animals deal with this effect, and whether it indeed exists. We explored the scaling of claw sharpness with body size using four insect species (Nauphoeta cinerea, Gromphadorhina portentosa, Atta cephalotes and Carausius morosus) each covering a large size range. The scaling of claw sharpness varied significantly between species, suggesting that they face different pressures regarding claw function. Attachment forces were measured for A. cephalotes and G. portentosa (which had different scaling of claw sharpness) on several rough surfaces using a centrifuge setup. As expected, attachment performance was poorer in larger animals. Firstly, larger animals were more likely to slip, although this effect depended on the scaling of claw sharpness. Secondly, when they gripped, they attached with smaller forces relative to their weight. This size-induced reduction in attachment performance has significant implications for the attachment ability of larger animals on rough surfaces.
Collapse
Affiliation(s)
- Jonathan G Pattrick
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David Labonte
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Imperial College London, Department of Bioengineering, South Kensington Campus, London SW7 2AZ, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
15
|
Voigt D, Gorb S. Functional morphology of tarsal adhesive pads and attachment ability in ticks Ixodes ricinus (Arachnida, Acari, Ixodidae). ACTA ACUST UNITED AC 2018; 220:1984-1996. [PMID: 28566356 DOI: 10.1242/jeb.152942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/16/2017] [Indexed: 11/20/2022]
Abstract
The presence of well-developed, elastic claws on ticks and widely pilose hosts led us to hypothesise that ticks are mostly adapted to attachment and locomotion on rough, strongly corrugated and hairy, felt-like substrates. However, by using a combination of morphological and experimental approaches, we visualised the ultrastructure of attachment devices of Ixodes ricinus and showed that this species adheres more strongly to smooth surfaces than to rough ones. Between paired, elongated, curved, elastic claws, I. ricinus bears a large, flexible, foldable adhesive pad, which represents an adaptation to adhesion on smooth surfaces. Accordingly, ticks attached strongest to glass and to surface profiles similar to those of the human skin, generating safety factors (attachment force relative to body weight) up to 534 (females). Considerably lower attachment force was found on silicone substrates and as a result of thanatosis after jolting.
Collapse
Affiliation(s)
- Dagmar Voigt
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| |
Collapse
|
16
|
Büscher TH, Buckley TR, Grohmann C, Gorb SN, Bradler S. The Evolution of Tarsal Adhesive Microstructures in Stick and Leaf Insects (Phasmatodea). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
17
|
Salerno G, Rebora M, Kovalev A, Gorb E, Gorb S. Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:627-638. [DOI: 10.1007/s00359-018-1266-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022]
|
18
|
Clemente CJ, Goetzke HH, Bullock JMR, Sutton GP, Burrows M, Federle W. Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces. J R Soc Interface 2018; 14:rsif.2017.0022. [PMID: 28468924 PMCID: PMC5454290 DOI: 10.1098/rsif.2017.0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers (Philaenus spumarius, Aphrophoridae) and leafhoppers (Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2–9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence.
Collapse
Affiliation(s)
| | | | - James M R Bullock
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
19
|
Giraud L, Bazin G, Giasson S. Lubrication with Soft and Hard Two-Dimensional Colloidal Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3610-3623. [PMID: 28296414 DOI: 10.1021/acs.langmuir.7b00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Normal and friction forces between immobilized two-dimensional (2D) homogeneous non-close-packed colloidal arrays made of different particles are compared in aqueous media. Soft pH-responsive (microgels) and nonresponsive hard (silica) particles of different sizes were used to create the 2D arrays. The results show that the friction of soft responsive structured layers can be successfully modulated by varying the pH, with a friction coefficient varying by nearly 3 orders of magnitude (10-2 to 1). This important change in lubricating properties is mainly correlated with the particle swelling behavior, i.e., the friction coefficient decreasing exponentially with an increase in the swelling ratio regardless of the size, surface coverage, and degree of ionization of the particles. In addition, the robustly attached microgel particles were able to sustain high pressure (up to 200 atm) without significant surface damage. The 2D arrays of nonresponsive hard particles also gave rise to a very low friction coefficient (μ ≈ 10-3) under similar experimental conditions and could sustain a larger pressure without damage (≤600 atm). The low friction dissipation observed between the hard arrays resulted from a rolling mechanism. Even though rolling requires nonimmobilized particles on the substrates, the results show the importance of attaching a certain proportion of particles on the surfaces to reduce friction.
Collapse
Affiliation(s)
- Lucie Giraud
- Faculty of Pharmacy and ‡Department of Chemistry, Université de Montréal , C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Gwénaëlle Bazin
- Faculty of Pharmacy and ‡Department of Chemistry, Université de Montréal , C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Suzanne Giasson
- Faculty of Pharmacy and ‡Department of Chemistry, Université de Montréal , C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
20
|
Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy. Sci Rep 2016; 6:39455. [PMID: 28008936 PMCID: PMC5180203 DOI: 10.1038/srep39455] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022] Open
Abstract
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.
Collapse
|
21
|
Abstract
In a recent study, we demonstrated that the pressurization of micro-fluidic features introduced in the subsurface of a soft polymer can be used to actively modify the magnitude of the adhesion to a harder counterface by changing its waviness or long wavelength undulations. In that case, both contacting surfaces had very smooth finishes with root-mean-square roughnesses of less than 20 nm. These values are far from those of many engineering surfaces, which usually have a naturally occurring roughness of between ten and a hundred times this value. In this work, we demonstrate that appropriate surface features, specifically relatively slender “fibrils”, can enhance the ability of a such a soft surface to adhere to a hard, but macroscopically rough, counterface, while still maintaining the possibility of switching the adhesion force from one level to another. Conversely, stiffer more conical surface features can suppress adhesion even against a smooth counterface. Examples of each form of topography can be found in the natural world.
Collapse
|
22
|
Grohmann C, Henze MJ, Nørgaard T, Gorb SN. Two functional types of attachment pads on a single foot in the Namibia bush cricket Acanthoproctus diadematus (Orthoptera: Tettigoniidae). Proc Biol Sci 2016. [PMID: 26213740 DOI: 10.1098/rspb.2014.2976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects have developed different structures to adhere to surfaces. Most common are smooth and hairy attachment pads, while nubby pads have also been described for representatives of Mantophasmatodea, Phasmida and Plecoptera. Here we report on the unusual combination of nubby and smooth tarsal attachment structures in the !nara cricket Acanthoproctus diadematus. Their three proximal tarsal pads (euplantulae) have a nubby surface, whereas the most distal euplantula is rather smooth with a hexagonal ground pattern resembling that described for the great green bush-cricket Tettigonia viridissima. This is, to our knowledge, the first report on nubby euplantulae in Orthoptera and the co-occurrence of nubby and smooth euplantulae on a single tarsus in a polyneopteran species. When adhering upside down to a horizontal glass plate, A. diadematus attaches its nubby euplantulae less often, compared to situations in which the animal is hanging upright or head down on a vertical plate. We discuss possible reasons for this kind of clinging behaviour, such as morphological constrains, the different role of normal and shear forces in attachment enhancement of the nubby and smooth pads, ease of the detachment process, and adaptations to walking on cylindrical substrates.
Collapse
|
23
|
Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc Natl Acad Sci U S A 2016; 113:1297-302. [PMID: 26787862 DOI: 10.1073/pnas.1519459113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives.
Collapse
|
24
|
King DR, Crosby AJ. Optimizing Adhesive Design by Understanding Compliance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27771-27781. [PMID: 26618537 DOI: 10.1021/acsami.5b08934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.
Collapse
Affiliation(s)
- Daniel R King
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Endlein T, Federle W. On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays. PLoS One 2015; 10:e0141269. [PMID: 26559941 PMCID: PMC4641605 DOI: 10.1371/journal.pone.0141269] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.
Collapse
Affiliation(s)
- Thomas Endlein
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Walter Federle
- University of Cambridge, Department of Zoology, Downing Street, Cambridge, CB2 3EJ, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Zill SN, Chaudhry S, Büschges A, Schmitz J. Force feedback reinforces muscle synergies in insect legs. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:541-553. [PMID: 26193626 DOI: 10.1016/j.asd.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
The nervous system solves complex biomechanical problems by activating muscles in modular, synergist groups. We have studied how force feedback in substrate grip is integrated with effects of sense organs that monitor support and propulsion in insects. Campaniform sensilla are mechanoreceptors that encode forces as cuticular strains. We tested the hypothesis that integration of force feedback from receptors of different leg segments during grip occurs through activation of specific muscle synergies. We characterized the effects of campaniform sensilla of the feet (tarsi) and proximal segments (trochanter and femur) on activities of leg muscles in stick insects and cockroaches. In both species, mechanical stimulation of tarsal sensilla activated the leg muscle that generates substrate grip (retractor unguis), as well as proximal leg muscles that produce inward pull (tibial flexor) and support/propulsion (trochanteral depressor). Stimulation of campaniform sensilla on proximal leg segments activated the same synergistic group of muscles. In stick insects, the effects of proximal receptors on distal leg muscles changed and were greatly enhanced when animals made active searching movements. In insects, the task-specific reinforcement of muscle synergies can ensure that substrate adhesion is rapidly established after substrate contact to provide a stable point for force generation.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
27
|
Internally architectured materials with directionally asymmetric friction. Sci Rep 2015; 5:10732. [PMID: 26040634 PMCID: PMC4455183 DOI: 10.1038/srep10732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.
Collapse
|
28
|
Gottardo M, Vallotto D, Beutel RG. Giant stick insects reveal unique ontogenetic changes in biological attachment devices. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:195-199. [PMID: 25601633 DOI: 10.1016/j.asd.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
A strong modification of tarsal and pretarsal attachment pads during the postembryonic development is described for the first time. In the exceptionally large thorny devil stick insect Eurycantha calcarata a functional arolium is only present in the immature instars, enabling them to climb on smooth surfaces, especially leaves. Nymphs are also characterized by greyish and hairy euplantulae on tarsomeres 1-4. The gradual modifications of the arolium and the euplantula of tarsomere 5 in the nymphal development are probably mainly related to increased weight. The distinct switch in the life style between the leaf-dwelling nymphal stages and the ground-dwelling adults results in the final abrupt change of the adhesive devices, resulting in a far-reaching reduction of the arolium, the presence of a fully-developed, elongated euplantula on tarsomere 5, and white and smooth euplantulae on tarsomeres 1-4. The developmental remodelling of attachment pads also reflects a phylogenetic pattern. The attachment devices of the earlier instars are similar to those found in the basalmost lineage of extant stick insects, Timema, which is characterized by a very large pan-shaped arolium and a hairy surface of the tarsal and pretarsal attachment pads.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy.
| | | | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Ebertstrasse 1, D-07743 Jena, Germany
| |
Collapse
|
29
|
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J. Positive force feedback in development of substrate grip in the stick insect tarsus. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:441-455. [PMID: 24951882 DOI: 10.1016/j.asd.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Annelie Exter
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
30
|
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J. WITHDRAWN: Positive force feedback in development of substrate grip in the stick insect tarsus. ARTHROPOD STRUCTURE & DEVELOPMENT 2014:S1467-8039(14)00046-2. [PMID: 24904979 DOI: 10.1016/j.asd.2014.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.asd.2014.06.002. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Annelie Exter
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
31
|
Dirks JH. Physical principles of fluid-mediated insect attachment - Shouldn't insects slip? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1160-6. [PMID: 25161849 PMCID: PMC4143074 DOI: 10.3762/bjnano.5.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/27/2014] [Indexed: 05/22/2023]
Abstract
Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the "classic" attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially "dry" or solid-like contact between the pad and the substrate.
Collapse
Affiliation(s)
- Jan-Henning Dirks
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
32
|
Labonte D, Federle W. Functionally different pads on the same foot allow control of attachment: stick insects have load-sensitive "heel" pads for friction and shear-sensitive "toe" pads for adhesion. PLoS One 2013; 8:e81943. [PMID: 24349156 PMCID: PMC3859514 DOI: 10.1371/journal.pone.0081943] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/18/2013] [Indexed: 11/21/2022] Open
Abstract
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces.
Collapse
Affiliation(s)
- David Labonte
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|