1
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
2
|
Uzhytchak M, Smolková B, Frtús A, Stupakov A, Lunova M, Scollo F, Hof M, Jurkiewicz P, Sullivan GJ, Dejneka A, Lunov O. Sensitivity of endogenous autofluorescence in HeLa cells to the application of external magnetic fields. Sci Rep 2023; 13:10818. [PMID: 37402779 DOI: 10.1038/s41598-023-38015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Stupakov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical and Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
3
|
Matysik J, Gerhards L, Theiss T, Timmermann L, Kurle-Tucholski P, Musabirova G, Qin R, Ortmann F, Solov'yov IA, Gulder T. Spin Dynamics of Flavoproteins. Int J Mol Sci 2023; 24:ijms24098218. [PMID: 37175925 PMCID: PMC10179055 DOI: 10.3390/ijms24098218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.
Collapse
Affiliation(s)
- Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Luca Gerhards
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tobias Theiss
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lisa Timmermann
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Guzel Musabirova
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Ruonan Qin
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Frank Ortmann
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tanja Gulder
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Binhi VN. Statistical Amplification of the Effects of Weak Magnetic Fields in Cellular Translation. Cells 2023; 12:724. [PMID: 36899858 PMCID: PMC10000676 DOI: 10.3390/cells12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
We assume that the enzymatic processes of recognition of amino acids and their addition to the synthesized molecule in cellular translation include the formation of intermediate pairs of radicals with spin-correlated electrons. The mathematical model presented describes the changes in the probability of incorrectly synthesized molecules in response to a change in the external weak magnetic field. A relatively high chance of errors has been shown to arise from the statistical enhancement of the low probability of local incorporation errors. This statistical mechanism does not require a long thermal relaxation time of electron spins of about 1 μs-a conjecture often used to match theoretical models of magnetoreception with experiments. The statistical mechanism allows for experimental verification by testing the usual Radical Pair Mechanism properties. In addition, this mechanism localizes the site where magnetic effects originate, the ribosome, which makes it possible to verify it by biochemical methods. This mechanism predicts a random nature of the nonspecific effects caused by weak and hypomagnetic fields and agrees with the diversity of biological responses to a weak magnetic field.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
5
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
6
|
Buchachenko AL, Bukhvostov AA, Ermakov KV, Kuznetsov DA. A specific role of magnetic isotopes in biological and ecological systems. Physics and biophysics beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 155:1-19. [PMID: 32224188 DOI: 10.1016/j.pbiomolbio.2020.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/17/2019] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
The great diversity of molecular processes in chemistry, physics, and biology exhibits universal property: they are controlled by powerful factor, angular momentum. Conservation of angular momentum (electron spin) is a fundamental and universal principle: all molecular processes are spin selective, they are allowed only for those spin states of reactants whose total spin is identical to that of products. Magnetic catalysis induced by magnetic interactions is a powerful and universal means to overcome spin prohibition and to control physical, chemical and biochemical processes. Contributing almost nothing in total energy, being negligibly small, magnetic interactions are the only ones which are able to change electron spin of reactants and switch over the processes between spin-allowed and spin-forbidden channels, controlling pathways and chemical reactivity in molecular processes. The main source of magnetic and electromagnetic effects in biological systems is now generally accepted and demonstrated in this paper to be radical pair mechanism which implies pairwise generation of radicals in biochemical reactions. This mechanism was convincingly established for enzymatic adenosine triphosphate (ATP) and desoxynucleic acid (DNA) synthesis by using catalyzing metal ions with magnetic nuclei (25Mg, 43Ca, 67Zn) and supported by magnetic field effects on these reactions. The mechanism, is shown to function in medicine as a medical remedy or technology (trans-cranial magnetic stimulation, nuclear magnetic control of the ATP synthesis in heart muscle, the killing of cancer cells by suppression of DNA synthesis). However, the majority of magnetic effects in biology remain to be irreproducible, contradictory, and enigmatic. Three sources of such a state are shown in this paper to be: the presence of paramagnetic metal ions as a component of enzymatic site or as an impurity in an uncontrollable amount; the property of the radical pair mechanism to function at a rather high concentration of catalyzing metal ions, when at least two ions enter into the catalytic site; and the kinetic restrictions, which imply compatibility of chemical and spin dynamics in radical pair. The purpose of the paper is to analyze the reliable sources of magnetic effects, to elucidate the reasons of their inconsistency, to show how and at what conditions magnetic effects exhibit themselves and how they may be controlled, switched on and off, taking into account not only biological and madical but some geophysical and environmental aspects as well.
Collapse
Affiliation(s)
- Anatoly L Buchachenko
- Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russian Federation; Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Russian Federation; Scientific Center of the Russian Academy of Sciences, 142432, Chernogolovka, Russian Federation; Moscow State University, 119992, Moscow, Russian Federation
| | | | - Kirill V Ermakov
- Russian National Research Medical University, 119997, Moscow, Russian Federation
| | - Dmitry A Kuznetsov
- Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russian Federation; Russian National Research Medical University, 119997, Moscow, Russian Federation.
| |
Collapse
|
7
|
Al Helal A, Iglauer S, Gubner R, Barifcani A. Performance of erythorbic acid as an oxygen scavenger in salted fresh and degraded monoethylene glycol under a magnetic memory effect. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ammar Al Helal
- WA School of Mines: Minerals, Energy and Chemical EngineeringCurtin University Perth WA Australia
- Al‐Khawarizmi College of EngineeringUniversity of Baghdad Baghdad Iraq
| | - Stefan Iglauer
- Petroleum Engineering DepartmentEdith Cowan University Joondalup WA Australia
| | - Rolf Gubner
- WA School of Mines: Minerals, Energy and Chemical EngineeringCurtin University Perth WA Australia
| | - Ahmed Barifcani
- WA School of Mines: Minerals, Energy and Chemical EngineeringCurtin University Perth WA Australia
| |
Collapse
|
8
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Filipović A, Grčić A, Perić-Mataruga V. Long-term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: effects on antioxidant biomarkers and nymphal gut mass. Int J Radiat Biol 2019; 95:1185-1193. [PMID: 30822251 DOI: 10.1080/09553002.2019.1589017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: The main goal of this study was to analyze the long-term effects of static (SMF) and extremely low-frequency magnetic field (ELF MF) on nymphal gut mass and antioxidant biomarkers in this tissue of cockroach Blaptica dubia. Materials and methods: One-month-old nymphs were exposed to magnetic field (MF) for 5 months in three experimental groups: control, exposure to SMF (110 mT) and exposure to ELF MF (50 Hz, 10 mT). Results: The gut masses of the MF groups were significantly lower when compared to control. Superoxide dismutase (SOD) and catalase (CAT) activities were markedly higher than for the control and the differences between the MF groups were statistically significant only for SOD. The applied MF had no effect on total glutathione (GSH) content. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly lower in both MF groups in comparison to the control. There was a significant difference between MF groups for GR activity. Principal Component Analysis (PCA) showed that CAT and GST were the main factors contributing to the differentiation of the control group from the treated experimental groups along PCA 1, and SOD and GR along PCA 2. PCA revealed clear separation between experimental groups depends on antioxidant biomarker response. Conclusion: The applied magnetic fields could be considered a potential stressor influencing gut mass, as well as examined antioxidative biomarkers.
Collapse
Affiliation(s)
- Dajana Todorović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Larisa Ilijin
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Marija Mrdaković
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Milena Vlahović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Aleksandra Filipović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Anja Grčić
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Vesna Perić-Mataruga
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
9
|
Hore PJ. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife 2019; 8:44179. [PMID: 30801245 PMCID: PMC6417859 DOI: 10.7554/elife.44179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/02/2019] [Indexed: 01/02/2023] Open
Abstract
Prolonged exposure to weak (~1 μT) extremely-low-frequency (ELF, 50/60 Hz) magnetic fields has been associated with an increased risk of childhood leukaemia. One of the few biophysical mechanisms that might account for this link involves short-lived chemical reaction intermediates known as radical pairs. In this report, we use spin dynamics simulations to derive an upper bound of 10 parts per million on the effect of a 1 μT ELF magnetic field on the yield of a radical pair reaction. By comparing this figure with the corresponding effects of changes in the strength of the Earth’s magnetic field, we conclude that if exposure to such weak 50/60 Hz magnetic fields has any effect on human biology, and results from a radical pair mechanism, then the risk should be no greater than travelling a few kilometres towards or away from the geomagnetic north or south pole.
Collapse
Affiliation(s)
- P J Hore
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
An open quantum system approach to the radical pair mechanism. Sci Rep 2018; 8:15719. [PMID: 30356085 PMCID: PMC6200754 DOI: 10.1038/s41598-018-34007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 01/29/2023] Open
Abstract
The development of the radical pair mechanism has allowed for theoretical explanation of the fact that magnetic fields are observed to have an effect on chemical reactions. The mechanism describes how an external magnetic field can alter chemical yields by interacting with the spin state of a pair of radicals. In the field of quantum biology, there has been some interest in the application of the mechanism to biological systems. This paper takes an open quantum systems approach to a model of the radical pair mechanism in order to derive a master equation in the Born-Markov approximation for the case of two electrons, each interacting with an environment of nuclear spins as well as the external magnetic field, then placed in a dissipative bosonic bath. This model is used to investigate two different cases relating to radical pair dynamics. The first uses a collective coupling approach to simplify calculations for larger numbers of nuclei interacting with the radical pair. The second looks at the effects of different hyperfine configurations of the radical pair model, for instance the case in which one of the electrons interact with two nuclei with different hyperfine coupling constants. The results of these investigations are analysed to see if they offer any insights into the biological application of the radical pair mechanism in avian magnetoreception.
Collapse
|
11
|
Kattnig DR. Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation. J Phys Chem B 2017; 121:10215-10227. [DOI: 10.1021/acs.jpcb.7b07672] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Daniel R. Kattnig
- Living Systems Institute
and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
12
|
|
13
|
Affiliation(s)
- Alex R. Jones
- School of Chemistry, Photon Science Institute and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|