1
|
Afzal N, du Bois de Dunilac S, Loutit AJ, Shea HO, Ulloa PM, Khamis H, Vickery RM, Wiertlewski M, Redmond SJ, Birznieks I. Role of arm reaching movement kinematics in friction perception at initial contact with smooth surfaces. J Physiol 2024; 602:2089-2106. [PMID: 38544437 DOI: 10.1113/jp286027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
When manipulating objects, humans begin adjusting their grip force to friction within 100 ms of contact. During motor adaptation, subjects become aware of the slipperiness of touched surfaces. Previously, we have demonstrated that humans cannot perceive frictional differences when surfaces are brought in contact with an immobilised finger, but can do so when there is submillimeter lateral displacement or subjects actively make the contact movement. Similarly, in, we investigated how humans perceive friction in the absence of intentional exploratory sliding or rubbing movements, to mimic object manipulation interactions. We used a two-alternative forced-choice paradigm in which subjects had to reach and touch one surface followed by another, and then indicate which felt more slippery. Subjects correctly identified the more slippery surface in 87 ± 8% of cases (mean ± SD; n = 12). Biomechanical analysis of finger pad skin displacement patterns revealed the presence of tiny (<1 mm) localised slips, known to be sufficient to perceive frictional differences. We tested whether these skin movements arise as a result of natural hand reaching kinematics. The task was repeated with the introduction of a hand support, eliminating the hand reaching movement and minimising fingertip movement deviations from a straight path. As a result, our subjects' performance significantly declined (66 ± 12% correct, mean ± SD; n = 12), suggesting that unrestricted reaching movement kinematics and factors such as physiological tremor, play a crucial role in enhancing or enabling friction perception upon initial contact. KEY POINTS: More slippery objects require a stronger grip to prevent them from slipping out of hands. Grip force adjustments to friction driven by tactile sensory signals are largely automatic and do not necessitate cognitive involvement; nevertheless, some associated awareness of grip surface slipperiness under such sensory conditions is present and helps to select a safe and appropriate movement plan. When gripping an object, tactile receptors provide frictional information without intentional rubbing or sliding fingers over the surface. However, we have discovered that submillimeter range lateral displacement might be required to enhance or enable friction sensing. The present study provides evidence that such small lateral movements causing localised partial slips arise and are an inherent part of natural reaching movement kinematics.
Collapse
Affiliation(s)
- Naqash Afzal
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Alastair J Loutit
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Helen O Shea
- Department of Psychology, University of Limerick, Limerick, Ireland
| | - Pablo Martinez Ulloa
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Heba Khamis
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Richard M Vickery
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Biorobotics, Tyree Foundation Institute of Health Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michaël Wiertlewski
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| | - Stephen J Redmond
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Ingvars Birznieks
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Biorobotics, Tyree Foundation Institute of Health Engineering, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Delhaye BP, Schiltz F, Crevecoeur F, Thonnard JL, Lefèvre P. Fast grip force adaptation to friction relies on localized fingerpad strains. SCIENCE ADVANCES 2024; 10:eadh9344. [PMID: 38232162 DOI: 10.1126/sciadv.adh9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions. We observed that, following an unbeknown change in plate across trials, participants adapted their grip force to friction. After switching from high to low friction, we found a significant increase in strain inside the contact arising ~100 ms before the modulation of grip force, suggesting that differences in strain patterns before lift-off are used by the nervous system to quickly adjust the force to the frictional properties of manipulated objects.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félicien Schiltz
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Córdova Bulens D, du Bois de Dunilac S, Delhaye BP, Lefèvre P, Redmond SJ. Open-Source Instrumented Object to Study Dexterous Object Manipulation. eNeuro 2024; 11:ENEURO.0211-23.2023. [PMID: 38164548 PMCID: PMC10849037 DOI: 10.1523/eneuro.0211-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Humans use tactile feedback to perform skillful manipulation. When tactile sensory feedback is unavailable, for instance, if the fingers are anesthetized, dexterity is severely impaired. Imaging the deformation of the finger pad skin when in contact with a transparent plate provides information about the tactile feedback received by the central nervous system. Indeed, skin deformations are transduced into neural signals by the mechanoreceptors of the finger pad skin. Understanding how this feedback is used for active object manipulation would improve our understanding of human dexterity. In this paper, we present a new device for imaging the skin of the finger pad of one finger during manipulation performed with a precision grip. The device's mass (300 g) makes it easy to use during unconstrained dexterous manipulation. Using this device, we reproduced the experiment performed in Delhaye et al. (2021) We extracted the strains aligned with the object's movement, i.e., the vertical strains in the ulnar and radial parts of the fingerpad, to see how correlated they were with the grip force (GF) adaptation. Interestingly, parts of our results differed from those in Delhaye et al. (2021) due to weight and inertia differences between the devices, with average GF across participants differing significantly. Our results highlight a large variability in the behavior of the skin across participants, with generally low correlations between strain and GF adjustments, suggesting that skin deformations are not the primary driver of GF adaptation in this manipulation scenario.
Collapse
Affiliation(s)
- David Córdova Bulens
- Biomedical Sensors & Signals Group, School of Electrical and Electronic Engineering, University College Dublin, D04V1W8, Dublin, Republic of Ireland
| | - Sophie du Bois de Dunilac
- Biomedical Sensors & Signals Group, School of Electrical and Electronic Engineering, University College Dublin, D04V1W8, Dublin, Republic of Ireland
| | - Benoit P Delhaye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, 1200, Brussels, Belgium
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, 1200, Brussels, Belgium
| | - Stephen J Redmond
- Biomedical Sensors & Signals Group, School of Electrical and Electronic Engineering, University College Dublin, D04V1W8, Dublin, Republic of Ireland
| |
Collapse
|
4
|
du Bois de Dunilac S, Córdova Bulens D, Lefèvre P, Redmond SJ, Delhaye BP. Biomechanics of the finger pad in response to torsion. J R Soc Interface 2023; 20:20220809. [PMID: 37073518 PMCID: PMC10113816 DOI: 10.1098/rsif.2022.0809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
Surface skin deformation of the finger pad during partial slippage at finger-object interfaces elicits firing of the tactile sensory afferents. A torque around the contact normal is often present during object manipulation, which can cause partial rotational slippage. Until now, studies of surface skin deformation have used stimuli sliding rectilinearly and tangentially to the skin. Here, we study surface skin dynamics under pure torsion of the right index finger of seven adult participants (four males). A custom robotic platform stimulated the finger pad with a flat clean glass surface, controlling the normal forces and rotation speeds applied while monitoring the contact interface using optical imaging. We tested normal forces between 0.5 N and 10 N at a fixed angular velocity of 20° s-1 and angular velocities between 5° s-1 and 100° s-1 at a fixed normal force of 2 N. We observe the characteristic pattern by which partial slips develop, starting at the periphery of the contact and propagating towards its centre, and the resulting surface strains. The 20-fold range of normal forces and angular velocities used highlights the effect of those parameters on the resulting torque and skin strains. Increasing normal force increases the contact area, the generated torque, strains and the twist angle required to reach full slip. On the other hand, increasing angular velocity causes more loss of contact at the periphery and higher strain rates (although it has no impact on resulting strains after the full rotation). We also discuss the surprisingly large inter-individual variability in skin biomechanics, notably observed in the twist angle the stimulus needs to rotate before reaching full slip.
Collapse
Affiliation(s)
- Sophie du Bois de Dunilac
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Córdova Bulens
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and Institute of Neuroscience (IoNS), Université catholique de Louvain, 1348 Louvain-la-Neuve and 1200 Brussels, Belgium
| | - Stephen J. Redmond
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Benoit P. Delhaye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and Institute of Neuroscience (IoNS), Université catholique de Louvain, 1348 Louvain-la-Neuve and 1200 Brussels, Belgium
| |
Collapse
|
5
|
Sukumar V, Johansson RS, Pruszynski JA. Precise and stable edge orientation signaling by human first-order tactile neurons. eLife 2022; 11:e81476. [PMID: 36314774 PMCID: PMC9642991 DOI: 10.7554/elife.81476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
Fast-adapting type 1 (FA-1) and slow-adapting type 1 (SA-1) first-order neurons in the human tactile system have distal axons that branch in the skin and form many transduction sites, yielding receptive fields with many highly sensitive zones or 'subfields.' We previously demonstrated that this arrangement allows FA-1 and SA-1 neurons to signal the geometric features of touched objects, specifically the orientation of raised edges scanned with the fingertips. Here, we show that such signaling operates for fine edge orientation differences (5-20°) and is stable across a broad range of scanning speeds (15-180 mm/s); that is, under conditions relevant for real-world hand use. We found that both FA-1 and SA-1 neurons weakly signal fine edge orientation differences via the intensity of their spiking responses and only when considering a single scanning speed. Both neuron types showed much stronger edge orientation signaling in the sequential structure of the evoked spike trains, and FA-1 neurons performed better than SA-1 neurons. Represented in the spatial domain, the sequential structure was strikingly invariant across scanning speeds, especially those naturally used in tactile spatial discrimination tasks. This speed invariance suggests that neurons' responses are structured via sequential stimulation of their subfields and thus links this capacity to their terminal organization in the skin. Indeed, the spatial precision of elicited action potentials rationally matched spatial acuity of subfield arrangements, which corresponds to a spatial period similar to the dimensions of individual fingertip ridges.
Collapse
|
6
|
Richardson BA, Vardar Y, Wallraven C, Kuchenbecker KJ. Learning to Feel Textures: Predicting Perceptual Similarities From Unconstrained Finger-Surface Interactions. IEEE TRANSACTIONS ON HAPTICS 2022; 15:705-717. [PMID: 36215359 DOI: 10.1109/toh.2022.3212701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Whenever we touch a surface with our fingers, we perceive distinct tactile properties that are based on the underlying dynamics of the interaction. However, little is known about how the brain aggregates the sensory information from these dynamics to form abstract representations of textures. Earlier studies in surface perception all used general surface descriptors measured in controlled conditions instead of considering the unique dynamics of specific interactions, reducing the comprehensiveness and interpretability of the results. Here, we present an interpretable modeling method that predicts the perceptual similarity of surfaces by comparing probability distributions of features calculated from short time windows of specific physical signals (finger motion, contact force, fingernail acceleration) elicited during unconstrained finger-surface interactions. The results show that our method can predict the similarity judgments of individual participants with a maximum Spearman's correlation of 0.7. Furthermore, we found evidence that different participants weight interaction features differently when judging surface similarity. Our findings provide new perspectives on human texture perception during active touch, and our approach could benefit haptic surface assessment, robotic tactile perception, and haptic rendering.
Collapse
|
7
|
Abstract
When grasping objects, we rely on our sense of touch to adjust our grip and react against external perturbations. Less than 200 ms after an unexpected event, the sensorimotor system is able to process tactile information to deduce the frictional strength of the contact and to react accordingly. Given that roughly 1,300 afferents innervate the fingertips, it is unclear how the nervous system can process such a large influx of data in a sufficiently short time span. In this study, we measured the deformation of the skin during the initial stages of incipient sliding for a wide range of frictional conditions. We show that the dominant patterns of deformation are sufficient to estimate the distance between the frictional force and the frictional strength of the contact. From these stereotypical patterns, a classifier can predict if an object is about to slide during the initial stages of incipient slip. The prediction is robust to the actual value of the interfacial friction, showing sensory invariance. These results suggest the existence of a possible compact set of bases that we call Eigenstrains. These Eigenstrains are a potential mechanism to rapidly decode the margin from full slip from the tactile information contained in the deformation of the skin. Our findings suggest that only 6 of these Eigenstrains are necessary to classify whether the object is firmly stuck to the fingers or is close to slipping away. These findings give clues about the tactile regulation of grasp and the insights are directly applicable to the design of robotic grippers and prosthetics that rapidly react to external perturbations.
Collapse
|
8
|
Deflorio D, Di Luca M, Wing AM. Skin and Mechanoreceptor Contribution to Tactile Input for Perception: A Review of Simulation Models. Front Hum Neurosci 2022; 16:862344. [PMID: 35721353 PMCID: PMC9201416 DOI: 10.3389/fnhum.2022.862344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
We review four current computational models that simulate the response of mechanoreceptors in the glabrous skin to tactile stimulation. The aim is to inform researchers in psychology, sensorimotor science and robotics who may want to implement this type of quantitative model in their research. This approach proves relevant to understanding of the interaction between skin response and neural activity as it avoids some of the limitations of traditional measurement methods of tribology, for the skin, and neurophysiology, for tactile neurons. The main advantage is to afford new ways of looking at the combined effects of skin properties on the activity of a population of tactile neurons, and to examine different forms of coding by tactile neurons. Here, we provide an overview of selected models from stimulus application to neuronal spiking response, including their evaluation in terms of existing data, and their applicability in relation to human tactile perception.
Collapse
|
9
|
Normal and tangential forces combine to convey contact pressure during dynamic tactile stimulation. Sci Rep 2022; 12:8215. [PMID: 35581308 PMCID: PMC9114425 DOI: 10.1038/s41598-022-12010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Humans need to accurately process the contact forces that arise as they perform everyday haptic interactions such as sliding the fingers along a surface to feel for bumps, sticky regions, or other irregularities. Several different mechanisms are possible for how the forces on the skin could be represented and integrated in such interactions. In this study, we used a force-controlled robotic platform and simultaneous ultrasonic modulation of the finger-surface friction to independently manipulate the normal and tangential forces during passive haptic stimulation by a flat surface. To assess whether the contact pressure on their finger had briefly increased or decreased during individual trials in this broad stimulus set, participants did not rely solely on either the normal force or the tangential force. Instead, they integrated tactile cues induced by both components. Support-vector-machine analysis classified physical trial data with up to 75% accuracy and suggested a linear perceptual mechanism. In addition, the change in the amplitude of the force vector predicted participants' responses better than the change of the coefficient of dynamic friction, suggesting that intensive tactile cues are meaningful in this task. These results provide novel insights about how normal and tangential forces shape the perception of tactile contact.
Collapse
|
10
|
Afzal N, Stubbs E, Khamis H, Loutit AJ, Redmond SJ, Vickery RM, Wiertlewski M, Birznieks I. Submillimeter Lateral Displacement Enables Friction Sensing and Awareness of Surface Slipperiness. IEEE TRANSACTIONS ON HAPTICS 2022; 15:20-25. [PMID: 34982692 DOI: 10.1109/toh.2021.3139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human tactile perception and motor control rely on the frictional estimates that stem from the deformation of the skin and slip events. However, it is not clear how exactly these mechanical events relate to the perception of friction. This study aims to quantify how minor lateral displacement and speed enables subjects to feel frictional differences. In a 2-alternative forced-choice protocol, an ultrasonic friction-reduction device was brought in contact perpendicular to the skin surface of an immobilized index finger; after reaching 1N normal force, the plate was moved laterally. A combination of four displacement magnitudes (0.2, 0.5, 1.2 and 2 mm), two levels of friction (high, low) and three displacement speeds (1, 5 and 10 mm/s) were tested. We found that the perception of frictional difference was enabled by submillimeter range lateral displacement. Friction discrimination thresholds were reached with lateral displacements ranging from 0.2 to 0.5 mm and surprisingly speed had only a marginal effect. These results demonstrate that partial slips are sufficient to cause awareness of surface slipperiness. These quantitative data are crucial for designing haptic devices that render slipperiness. The results also show the importance of subtle lateral finger movements present during dexterous manipulation tasks.
Collapse
|
11
|
Schiltz F, Delhaye BP, Thonnard JL, Lefevre P. Grip Force is Adjusted at a Level That Maintains an Upper Bound on Partial Slip Across Friction Conditions During Object Manipulation. IEEE TRANSACTIONS ON HAPTICS 2022; 15:2-7. [PMID: 34941525 DOI: 10.1109/toh.2021.3137969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dexterous manipulation of objects heavily relies on the feedback provided by the tactile afferents innervating the fingertips. Previous studies have suggested that humans might take advantage of partial slip, localized loss of grip between the skin and the object, to gauge the stability of a contact and react appropriately when it is compromised, that is, when slippage is about to happen. To test this hypothesis, we asked participants to perform point-to-point movements using a manipulandum. Through optical imaging, the device monitored partial slip at the contact interface, and at the same time, the forces exerted by the fingers. The level of friction of the contact material was changed every five trials. We found that the level of grip force was systematically adjusted to the level of friction, and thus partial slip was limited to an amount similar across friction conditions. We suggest that partial slip is a key signal for dexterous manipulation and that the grip force is regulated to continuously maintain an upper bound on partial slip across friction conditions.
Collapse
|
12
|
Kao AR, Xu C, Gerling GJ. Using Digital Image Correlation to Quantify Skin Deformation With Von Frey Monofilaments. IEEE TRANSACTIONS ON HAPTICS 2022; 15:26-31. [PMID: 34951855 PMCID: PMC9006180 DOI: 10.1109/toh.2021.3138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin von Frey monofilaments are a clinical tool used worldwide to assess touch deficits. One's ability to perceive touch with low-force monofilaments (0.008 - 0.07 g) establishes an absolute threshold and thereby the extent of impairment. While individual monofilaments bend at defined forces, there are no empirical measurements of the skin surface's response. In this work, we measure skin surface deformation at light-touch perceptual limits, by adopting an imaging approach using 3D digital image correlation (DIC). Generating point cloud data from three cameras surveilling the index finger pad, we reassemble and stitch together multiple 3D surfaces. Then, in response to each monofilament's indentation over time, we quantify strain across the skin surface, radial deformation emanating from the contact point, penetration depth into the surface, and area between 2D cross-sections. The results show that the monofilaments create distinct states of skin deformation, which align closely with just noticeable percepts at absolute detection and discrimination thresholds, even amidst variance between individuals and trials. In particular, the resolution of the DIC imaging approach captures sufficient differences in skin deformation at threshold, offering promise in understanding the skin's role in perception.
Collapse
|
13
|
Abstract
Humans have the remarkable ability to manipulate a large variety of objects, regardless of how fragile, heavy, or slippery they are. To correctly scale the grip forces, the nervous system gauges the slipperiness of the surface. This information is present at the instant we first touch an object, even before any lateral force develops. However, how friction could be estimated without slippage only from the fingertip skin deformation is not understood, either in neuroscience or engineering disciplines. This study demonstrates that a radial tensile strain of the skin is involved in the perception of slipperiness during this initial contact. These findings can inform the design of advanced tactile sensors for robotics or prosthetics and for improving haptic human–machine interactions. Humans efficiently estimate the grip force necessary to lift a variety of objects, including slippery ones. The regulation of grip force starts with the initial contact and takes into account the surface properties, such as friction. This estimation of the frictional strength has been shown to depend critically on cutaneous information. However, the physical and perceptual mechanism that provides such early tactile information remains elusive. In this study, we developed a friction-modulation apparatus to elucidate the effects of the frictional properties of objects during initial contact. We found a correlation between participants’ conscious perception of friction and radial strain patterns of skin deformation. The results provide insights into the tactile cues made available by contact mechanics to the sensorimotor regulation of grip, as well as to the conscious perception of the frictional properties of an object.
Collapse
|
14
|
Humans Use a Temporally Local Code for Vibrotactile Perception. eNeuro 2021; 8:ENEURO.0263-21.2021. [PMID: 34625459 PMCID: PMC8570683 DOI: 10.1523/eneuro.0263-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sensory environments are commonly characterized by specific physical features, which sensory systems might exploit using dedicated processing mechanisms. In the tactile sense, one such characteristic feature is frictional movement, which gives rise to short-lasting (<10 ms), information-carrying integument vibrations. Rather than generic integrative encoding (i.e., averaging or spectral analysis capturing the "intensity" and "best frequency"), the tactile system might benefit from, what we call a "temporally local" coding scheme that instantaneously detects and analyzes shapes of these short-lasting features. Here, by employing analytic psychophysical measurements, we tested whether the prerequisite of temporally local coding exists in the human tactile system. We employed pulsatile skin indentations at the fingertip that allowed us to trade manipulation of local pulse shape against changes in global intensity and frequency, achieved by adding pulses of the same shape. We found that manipulation of local pulse shape has strong effects on psychophysical performance, arguing for the notion that humans implement a temporally local coding scheme for perceptual decisions. As we found distinct differences in performance using different kinematic layouts of pulses, we inquired whether temporally local coding is tuned to a unique kinematic variable. This was not the case, since we observed different preferred kinematic variables in different ranges of pulse shapes. Using an established encoding model for primary afferences and indentation stimuli, we were able to demonstrate that the found kinematic preferences in human performance, may well be explained by the response characteristics of Pacinian corpuscles (PCs), a class of human tactile primary afferents.
Collapse
|
15
|
Delhaye BP, Schiltz F, Barrea A, Thonnard JL, Lefèvre P. Measuring fingerpad deformation during active object manipulation. J Neurophysiol 2021; 126:1455-1464. [PMID: 34495789 DOI: 10.1152/jn.00358.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During active object manipulation, the finger-object interactions give rise to complex fingertip skin deformations. These deformations are in turn encoded by the local tactile afferents and provide rich and behaviorally relevant information to the central nervous system. Most of the work studying the mechanical response of the finger to dynamic loading has been performed under a passive setup, thereby precisely controlling the kinematics or the dynamics of the loading. However, to identify aspects of the deformations that are relevant to online control during object manipulation, it is desirable to measure the skin response in an active setup. To that end, we developed a device that allows us to monitor finger forces, skin deformations, and kinematics during fine manipulation. We describe the device in detail and test it to precisely describe how the fingertip skin in contact with the object deforms during a simple vertical oscillation task. We show that the level of grip force directly influences the fingerpad skin strains and that the strain rates are substantial during active manipulation (norm up to 100%/s). The developed setup will enable us to causally relate sensory information, i.e. skin deformation, to online control, i.e. grip force adjustment, in future studies.NEW & NOTEWORTHY We present a novel device, a manipulandum, that enables to image the contact between the finger and the contact surface during active manipulation of the device. The device is tested in a simple vertical oscillation task involving 18 participants. We demonstrate that substantial surface skin strains take place at the finger-object interface and argue that those deformations provide essential information for grasp stability during object manipulation.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félicien Schiltz
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Allan Barrea
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Zangrandi A, D'Alonzo M, Cipriani C, Di Pino G. Neurophysiology of slip sensation and grip reaction: insights for hand prosthesis control of slippage. J Neurophysiol 2021; 126:477-492. [PMID: 34232750 PMCID: PMC7613203 DOI: 10.1152/jn.00087.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback is pivotal for a proficient dexterity of the hand. By modulating the grip force in function of the quick and not completely predictable change of the load force, grabbed objects are prevented to slip from the hand. Slippage control is an enabling achievement to all manipulation abilities. However, in hand prosthetics, the performance of even the most innovative research solutions proposed so far to control slippage remain distant from the human physiology. Indeed, slippage control involves parallel and compensatory activation of multiple mechanoceptors, spinal and supraspinal reflexes, and higher-order voluntary behavioral adjustments. In this work, we reviewed the literature on physiological correlates of slippage to propose a three-phases model for the slip sensation and reaction. Furthermore, we discuss the main strategies employed so far in the research studies that tried to restore slippage control in amputees. In the light of the proposed three-phase slippage model and from the weaknesses of already implemented solutions, we proposed several physiology-inspired solutions for slippage control to be implemented in the future hand prostheses. Understanding the physiological basis of slip detection and perception and implementing them in novel hand feedback system would make prosthesis manipulation more efficient and would boost its perceived naturalness, fostering the sense of agency for the hand movements.
Collapse
Affiliation(s)
- Andrea Zangrandi
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
17
|
Human low-threshold mechanoafferent responses to pure changes in friction controlled using an ultrasonic haptic device. Sci Rep 2021; 11:11227. [PMID: 34045550 PMCID: PMC8160007 DOI: 10.1038/s41598-021-90533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
The forces that are developed when manipulating objects generate sensory cues that inform the central nervous system about the qualities of the object’s surface and the status of the hand/object interaction. Afferent responses to frictional transients or slips have been studied in the context of lifting/holding tasks. Here, we used microneurography and an innovative tactile stimulator, the Stimtac, to modulate both the friction level of a surface, without changing the surface or adding a lubricant, and, to generate the frictional transients in a pure and net fashion. In three protocols, we manipulated: the frictional transients, the friction levels, the rise times, the alternation of phases of decrease or increase in friction to emulate grating-like stimuli. Afferent responses were recorded in 2 FAIs, 1 FAII, 2 SAIs and 3 SAIIs from the median nerve of human participants. Independently of the unit type, we observed that: single spikes were generated time-locked to the frictional transients, and that reducing the friction level reduced the number of spikes during the stable phase of the stimulation. Our results suggest that those frictional cues are encoded in all the unit types and emphasize the possibility to use the Stimtac device to control mechanoreceptor firing with high temporal precision.
Collapse
|
18
|
Delhaye BP, Jarocka E, Barrea A, Thonnard JL, Edin B, Lefèvre P. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset. eLife 2021; 10:64679. [PMID: 33884951 PMCID: PMC8169108 DOI: 10.7554/elife.64679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/13/2021] [Indexed: 01/27/2023] Open
Abstract
Human tactile afferents provide essential feedback for grasp stability during dexterous object manipulation. Interacting forces between an object and the fingers induce slip events that are thought to provide information about grasp stability. To gain insight into this phenomenon, we made a transparent surface slip against a fixed fingerpad while monitoring skin deformation at the contact. Using microneurography, we simultaneously recorded the activity of single tactile afferents innervating the fingertips. This unique combination allowed us to describe how afferents respond to slip events and to relate their responses to surface deformations taking place inside their receptive fields. We found that all afferents were sensitive to slip events, but fast-adapting type I (FA-I) afferents in particular faithfully encoded compressive strain rates resulting from those slips. Given the high density of FA-I afferents in fingerpads, they are well suited to detect incipient slips and to provide essential information for the control of grip force during manipulation. Each fingertip hosts thousands of nerve fibers that allow us to handle objects with great dexterity. These fibers relay the amount of friction between the skin and the item, and the brain uses this sensory feedback to adjust the grip as necessary. Yet, exactly how tactile nerve fibers encode information about friction remains largely unknown. Previous research has suggested that friction might not be recorded per se in nerve signals to the brain. Instead, fibers in the finger pad might be responding to localized ‘partial slips’ that indicate an impending loss of grip. Indeed, when lifting an object, fingertips are loaded with a tangential force that puts strain on the skin, resulting in subtle local deformations. Nerve fibers might be able to detect these skin changes, prompting the brain to adjust an insecure grip before entirely losing grasp of an object. However, technical challenges have made studying the way tactile nerve fibers respond to slippage and skin strain difficult. For the first time, Delhaye et al. have now investigated how these fibers respond to and encode information about the strain placed on fingertips as they are loaded tangentially. A custom-made imaging apparatus was paired with standard electrodes to record the activity of four different kinds of tactile nerve fibers in participants who had a fingertip placed against a plate of glass. The imaging focused on revealing changes in skin surface as tangential force was applied; the electrodes measured impulses from individual nerve fibers from the fingertip. While all the fibers responded during partial slips, fast-adapting type 1 nerves generated strong responses that signal a local loss of grip. Recordings showed that these fibers consistently encoded changes in the skin strain patterns, and were more sensitive to skin compressions related to slippage than to stretch. These results show how tactile nerve fibers encode the subtle skin compressions created when fingers handle objects. The methods developed by Delhaye et al. could further be used to explore the response properties of tactile nerve fibers, sensory feedback and grip.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Ewa Jarocka
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Allan Barrea
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Louis Thonnard
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Benoni Edin
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
A review of the neurobiomechanical processes underlying secure gripping in object manipulation. Neurosci Biobehav Rev 2021; 123:286-300. [PMID: 33497782 DOI: 10.1016/j.neubiorev.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
O'SHEA, H. and S. J. Redmond. A review of the neurobiomechanical processes underlying secure gripping in object manipulation. NEUROSCI BIOBEHAV REV 286-300, 2021. Humans display skilful control over the objects they manipulate, so much so that biomimetic systems have yet to emulate this remarkable behaviour. Two key control processes are assumed to facilitate such dexterity: predictive cognitive-motor processes that guide manipulation procedures by anticipating action outcomes; and reactive sensorimotor processes that provide important error-based information for movement adaptation. Notwithstanding increased interdisciplinary research interest in object manipulation behaviour, the complexity of the perceptual-sensorimotor-cognitive processes involved and the theoretical divide regarding the fundamentality of control mean that the essential mechanisms underlying manipulative action remain undetermined. In this paper, following a detailed discussion of the theoretical and empirical bases for understanding human dexterous movement, we emphasise the role of tactile-related sensory events in secure object handling, and consider the contribution of certain biophysical and biomechanical phenomena. We aim to provide an integrated account of the current state-of-art in skilled human-object interaction that bridges the literature in neuroscience, cognitive psychology, and biophysics. We also propose novel directions for future research exploration in this area.
Collapse
|
20
|
You I, Mackanic DG, Matsuhisa N, Kang J, Kwon J, Beker L, Mun J, Suh W, Kim TY, Tok JBH, Bao Z, Jeong U. Artificial multimodal receptors based on ion relaxation dynamics. Science 2021; 370:961-965. [PMID: 33214277 DOI: 10.1126/science.aba5132] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Human skin has different types of tactile receptors that can distinguish various mechanical stimuli from temperature. We present a deformable artificial multimodal ionic receptor that can differentiate thermal and mechanical information without signal interference. Two variables are derived from the analysis of the ion relaxation dynamics: the charge relaxation time as a strain-insensitive intrinsic variable to measure absolute temperature and the normalized capacitance as a temperature-insensitive extrinsic variable to measure strain. The artificial receptor with a simple electrode-electrolyte-electrode structure simultaneously detects temperature and strain by measuring the variables at only two measurement frequencies. The human skin-like multimodal receptor array, called multimodal ion-electronic skin (IEM-skin), provides real-time force directions and strain profiles in various tactile motions (shear, pinch, spread, torsion, and so on).
Collapse
Affiliation(s)
- Insang You
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - David G Mackanic
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Naoji Matsuhisa
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Jiheong Kang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Jimin Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Levent Beker
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Wonjeong Suh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
21
|
Khamis H, Afzal HMN, Sanchez J, Vickery R, Wiertlewski M, Redmond SJ, Birznieks I. Friction sensing mechanisms for perception and motor control: passive touch without sliding may not provide perceivable frictional information. J Neurophysiol 2021; 125:809-823. [PMID: 33439786 DOI: 10.1152/jn.00504.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perception of the frictional properties of a surface contributes to the multidimensional experience of exploring various materials; we slide our fingers over a surface to feel it. In contrast, during object manipulation, we grip objects without such intended exploratory movements. Given that we are aware of the slipperiness of objects or tools that are held in the hand, we investigated whether the initial contact between the fingertip skin and the surface of the object is sufficient to provide this consciously perceived frictional information. Using a two-alternative forced-choice protocol, we examined human capacity to detect frictional differences using touch, when two otherwise structurally identical surfaces were brought in contact with the immobilized finger perpendicularly or under an angle (20° or 30°) to the skin surface (passive touch). An ultrasonic friction reduction device was used to generate three different frictions over each of three flat surfaces with different surface structure: 1) smooth glass, 2) textured surface with dome-shaped features, and 3) surface with sharp asperities (sandpaper). Participants (n = 12) could not reliably indicate which of the two surfaces was more slippery under any of these conditions. In contrast, when slip was induced by moving the surface laterally by a total of 5 mm (passive slip), participants could clearly perceive frictional differences. Thus making contact with the surface, even with moderate tangential forces, was not enough to perceive frictional differences, instead conscious perception required a sufficient size slip.NEW & NOTEWORTHY This study contributes to understanding how frictional information is obtained and used by the brain. When the skin is contacting surfaces of identical topography but varying frictional properties, the deformation pattern is different; however, available sensory cues did not get translated into perception of frictional properties unless a sufficiently large lateral movement was present. These neurophysiological findings may inform how to design and operate haptic devices relying on friction modulation principles.
Collapse
Affiliation(s)
- Heba Khamis
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Hafiz Malik Naqash Afzal
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Jennifer Sanchez
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Richard Vickery
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Michaël Wiertlewski
- Cognitive Robotics Department, Delft University of Technology, Delft, The Netherlands
| | - Stephen J Redmond
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| | - Ingvars Birznieks
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Liu M, Batista A, Bensmaia S, Weber DJ. Information about contact force and surface texture is mixed in the firing rates of cutaneous afferent neurons. J Neurophysiol 2020; 125:496-508. [PMID: 33326349 DOI: 10.1152/jn.00725.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of dorsal root ganglia (DRG) neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected. Tactile nerve fibers convey information about many features of haptic interactions, including the force and speed of contact, as well as the texture and shape of the objects being handled. How we perceive these object features is relatively unaffected by the forces and movements we use when interacting with the object. Because signals related to contact events and object properties are mixed in the responses of tactile fibers, our ability to disentangle these different components of our tactile experience implies that they are demultiplexed as they propagate along the neuraxis. To understand how texture and contact mechanics are encoded together by tactile fibers, we studied the activity of multiple neurons recorded simultaneously in the cervical DRG of two anesthetized rhesus monkeys while textured surfaces were applied to the glabrous skin of the fingers and palm using a handheld probe. A transducer at the tip of the textured probe measured contact forces as tactile stimuli were applied at different locations on the finger-pads and palm. We examined how a sample population of DRG neurons encode force and texture and found that firing rates of individual neurons are modulated by both force and texture. In particular, slowly adapting (SA) neurons were more responsive to force than texture, and rapidly adapting (RA) neurons were more responsive to texture than force. Although force could be decoded accurately throughout the entire contact interval, texture signals were most salient during onset and offset phases of the contact interval.NEW & NOTEWORTHY Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of DRG neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected.
Collapse
Affiliation(s)
- Monica Liu
- Rehab Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Aaron Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Douglas J Weber
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Introduction of a New In-Situ Measurement System for the Study of Touch-Feel Relevant Surface Properties. Polymers (Basel) 2020; 12:polym12061380. [PMID: 32575513 PMCID: PMC7361978 DOI: 10.3390/polym12061380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
The touch-feel sensation of product surfaces arouses growing interest in various industry branches. To entangle the underlying physical and material parameters responsible for a specific touch-feel sensation, a new measurement system has been developed. This system aims to record the prime physical interaction parameters at a time, which is considered a necessary prerequisite for a successful physical description of the haptic sensation. The measurement setup enables one to measure the dynamic coefficient of friction, the macroscopic contact area of smooth and rough surfaces, the angle enclosed between the human finger and the soft-touch surfaces and the vibrations induced in the human finger during relative motion at a time. To validate the measurement stand, a test series has been conducted on two soft-touch surfaces of different roughness. While the individual results agree well with the literature, their combination revealed new insights. Finally, the investigation of the haptics of polymer coatings with the presented measuring system should facilitate the design of surfaces with tailor-made touch-feel properties.
Collapse
|
24
|
Ozdamar I, Alipour MR, Delhaye BP, Lefevre P, Basdogan C. Step-Change in Friction Under Electrovibration. IEEE TRANSACTIONS ON HAPTICS 2020; 13:137-143. [PMID: 31944995 DOI: 10.1109/toh.2020.2966992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rendering tactile effects on a touch screen via electrovibration has many potential applications. However, our knowledge on tactile perception of change in friction and the underlying contact mechanics are both very limited. In this article, we investigate the tactile perception and the contact mechanics for a step change in friction under electrovibration during a relative sliding between a finger and the surface of a capacitive touch screen. First, we conduct magnitude estimation experiments to investigate the role of normal force and sliding velocity on the perceived tactile intensity for a step increase and decrease in friction, called rising friction (RF) and falling friction (FF). To investigate the contact mechanics involved in RF and FF, we then measure the frictional force, the apparent contact area, and the strains acting on the fingerpad during sliding at a constant velocity under three different normal loads using a custom-made experimental set-up. The results show that the participants perceived RF stronger than FF, and both the normal force and sliding velocity significantly influenced their perception. These results are supported by our mechanical measurements; the relative change in friction, the apparent contact area, and the strain in the sliding direction were all higher for RF than those for FF, especially for low normal forces. Taken together, our results suggest that different contact mechanics take place during RF and FF due to the viscoelastic behavior of fingerpad skin, and those differences influence our tactile perception of a step change in friction.
Collapse
|
25
|
Gerdjikov TV, Bergner CG, Schwarz C. Global Tactile Coding in Rat Barrel Cortex in the Absence of Local Cues. Cereb Cortex 2019; 28:2015-2027. [PMID: 28498957 DOI: 10.1093/cercor/bhx108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/15/2022] Open
Abstract
Although whisker-related perception is based predominantly on local, near-instantaneous coding, global, intensive coding, which integrates the vibrotactile signal over time, has also been shown to play a role given appropriate behavioral conditions. Here, we study global coding in isolation by studying head-fixed rats that identified pulsatile stimuli differing in pulse frequency but not in pulse waveforms, thus abolishing perception based on local coding. We quantified time locking and spike counts as likely variables underpinning the 2 coding schemes. Both neurometric variables contained substantial stimulus information, carried even by spikes of single barrel cortex neurons. To elucidate which type of information is actually used by the rats, we systematically compared psychometric with neurometric sensitivity based on the 2 coding schemes. Neurometric performance was calculated by using a population-encoding model incorporating the properties of our recorded neuron sample. We found that sensitivity calculated from spike counts sampled over long periods (>1 s) matched the performance of rats better than the one carried by spikes time-locked to the stimulus. We conclude that spike counts are more relevant to tactile perception when instantaneous kinematic parameters are not available.
Collapse
Affiliation(s)
- Todor V Gerdjikov
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Eberhard Karls University, 72076 Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University, 72076 Tübingen, Germany.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 9HN, UK
| | - Caroline G Bergner
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Eberhard Karls University, 72076 Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University, 72076 Tübingen, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Systems Neuroscience, Eberhard Karls University, 72076 Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Moscatelli A, Scotto CR, Ernst MO. Illusory changes in the perceived speed of motion derived from proprioception and touch. J Neurophysiol 2019; 122:1555-1565. [PMID: 31314634 DOI: 10.1152/jn.00719.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In vision, the perceived velocity of a moving stimulus differs depending on whether we pursue it with the eyes or not: A stimulus moving across the retina with the eyes stationary is perceived as being faster compared with a stimulus of the same physical speed that the observer pursues with the eyes, while its retinal motion is zero. This effect is known as the Aubert-Fleischl phenomenon. Here, we describe an analog phenomenon in touch. We asked participants to estimate the speed of a moving stimulus either from tactile motion only (i.e., motion across the skin), while keeping the hand world stationary, or from kinesthesia only by tracking the stimulus with a guided arm movement, such that the tactile motion on the finger was zero (i.e., only finger motion but no movement across the skin). Participants overestimated the velocity of the stimulus determined from tactile motion compared with kinesthesia in analogy with the visual Aubert-Fleischl phenomenon. In two follow-up experiments, we manipulated the stimulus noise by changing the texture of the touched surface. Similarly to the visual phenomenon, this significantly affected the strength of the illusion. This study supports the hypothesis of shared computations for motion processing between vision and touch.NEW & NOTEWORTHY In vision, the perceived velocity of a moving stimulus is different depending on whether we pursue it with the eyes or not, an effect known as the Aubert-Fleischl phenomenon. We describe an analog phenomenon in touch. We asked participants to estimate the speed of a moving stimulus either from tactile motion or by pursuing it with the hand. Participants overestimated the stimulus velocity measured from tactile motion compared with kinesthesia, in analogy with the visual Aubert-Fleischl phenomenon.
Collapse
Affiliation(s)
- Alessandro Moscatelli
- Department of Systems Medicine and Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Cognitive Interaction Technology-Cluster of Excellence, Bielefeld University, Bielefeld, Germany
| | - Cecile R Scotto
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers-Université de Tours-Centre National de la Recherche Scientifique, Poitiers, France.,Cognitive Interaction Technology-Cluster of Excellence, Bielefeld University, Bielefeld, Germany
| | - Marc O Ernst
- Applied Cognitive Psychology, Ulm University, Ulm, Germany.,Cognitive Interaction Technology-Cluster of Excellence, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
27
|
Zuo Y, Diamond ME. Rats Generate Vibrissal Sensory Evidence until Boundary Crossing Triggers a Decision. Curr Biol 2019; 29:1415-1424.e5. [PMID: 31006570 DOI: 10.1016/j.cub.2019.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Behaviors in which primates collect externally generated streams of sensory evidence, such as judgment of random dot motion direction, are explained by a bounded integration decision model. Does this model extend to rodents, and does it account for behavior in which the motor system generates evidence through interactions with the environment? In this study, rats palpated surfaces to identify the texture before them, showing marked trial-to-trial variability in the number of touches prior to expressing their choice. By high-speed video, we tracked whisker kinematic features and characterized how they encoded the contacted texture. Next, we quantified the evidence for each candidate texture transmitted on each touch by the specified whisker kinematic features. The instant of choice was well fit by modeling the brain as an integrator that gives the greatest weight to vibrissal evidence on first touch and exponentially less weight to evidence on successive touches; according to this model, the rat makes a decision when the accumulated quantity of evidence for one texture reaches a boundary. In summary, evidence appears to be accumulated within the brain until sufficient to support a well-grounded choice. These findings extend the framework of bounded sensory integration from primates to rodents and from passively received evidence to evidence that is actively generated by the sensorimotor system.
Collapse
Affiliation(s)
- Yanfang Zuo
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
28
|
Saleem MK, Yilmaz C, Basdogan C. Psychophysical Evaluation of Change in Friction on an Ultrasonically-Actuated Touchscreen. IEEE TRANSACTIONS ON HAPTICS 2018; 11:599-610. [PMID: 29994033 DOI: 10.1109/toh.2018.2830790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To render tactile cues on a touchscreen by friction modulation, it is important to understand how humans perceive a change in friction. In this study, we investigate the relations between perceived change in friction on an ultrasonically actuated touchscreen and parameters involved in contact between finger and its surface. We first estimate the perceptual thresholds to detect rising and falling friction while a finger is sliding on the touch surface. Then, we conduct intensity scaling experiments and investigate the effect of finger sliding velocity, normal force, and rise/fall time of vibration amplitude (transition time) on the perceived intensity of change in friction. In order to better understand the role of contact mechanics, we also look into the correlations between the perceived intensities of subjects and several parameters involved in contact. The results of our experiments show that the contrast and rate of change in tangential force were best correlated with the perceived intensity. The subjects perceived rising friction more strongly than falling friction, particularly at higher tangential force contrast. We argue that this is due to hysteresis and viscoelastic behavior of fingertip under tangential loading. The results also showed that transition time and normal force have significant effect on our tactile perception.
Collapse
|
29
|
Ishizuka H, Komurasaki S, Kato K, Kajimoto H. Evaluation of Electrovibration Stimulation with a Narrow Electrode. MICROMACHINES 2018; 9:mi9100483. [PMID: 30424416 PMCID: PMC6215128 DOI: 10.3390/mi9100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Recently, electrovibration tactile displays were studied and applied to several use cases by researchers. The high-resolution electrode for electrovibration stimulus will contribute to the presentation of a more realistic tactile sensation. However, the sizes of the electrodes that have been used thus far are of the millimeter-order. In this study, we evaluated whether a single narrow electrode was able to provide the electrovibration stimulus adequately. The widths of the prepared electrodes were 10, 20, 50, 100, 200, and 500 μm. We conducted a sensory experiment to characterize each electrode. The electrodes with widths of 50 μm or less were not durable or suitable for the applied signal, although the subjects perceived the stimulus. Therefore, we conducted the experiment without using these non-durable electrodes. The voltage waveform condition affected perception, and the subjects were not sensitive to the electrovibration stimulus at low frequencies. In addition, the stroke direction of the fingertip had a significant effect on perception under certain conditions. The results indicate that electrovibration stimulation requires an electrode with a width of only a few hundred micrometers for stimulation.
Collapse
Affiliation(s)
- Hiroki Ishizuka
- Department of Intelligent Mechanical Systems Engineering, Institute of Technology, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan.
| | - Seiya Komurasaki
- Department of Intelligent Mechanical Systems Engineering, Institute of Technology, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan.
| | - Kunihiro Kato
- Department of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
| | - Hiroyuki Kajimoto
- Department of Informatics, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
30
|
Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface. Sci Rep 2018; 8:13710. [PMID: 30209322 PMCID: PMC6135846 DOI: 10.1038/s41598-018-31818-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch.
Collapse
|
31
|
Perception of partial slips under tangential loading of the fingertip. Sci Rep 2018; 8:7032. [PMID: 29728576 PMCID: PMC5935679 DOI: 10.1038/s41598-018-25226-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/12/2018] [Indexed: 11/24/2022] Open
Abstract
During tactile exploration, partial slips occur systematically at the periphery of fingertip-object contact prior to full slip. Although the mechanics of partial slips are well characterized, the perception of such events is unclear. Here, we performed psychophysical experiments to assess partial slip detection ability on smooth transparent surfaces. In these experiments, the index fingertip of human subjects was stroked passively by a smooth, transparent glass plate while we imaged the contact slipping against the glass. We found that subjects were able to detect fingertip slip before full slip occurred when, on average, only 48% of the contact area was slipping. Additionally, we showed that partial slips and plate displacement permitted slip detection, but that the subjects could not rely on tangential force to detect slipping of the plate. Finally, we observed that, keeping the normal contact force constant, slip detection was impeded when the plate was covered with a hydrophobic coating dramatically lowering the contact friction and therefore the amount of fingertip deformation. Together, these results demonstrate that partial slips play an important role in fingertip slip detection and support the hypothesis that the central nervous system relies on them to adjust grip force during object manipulation.
Collapse
|
32
|
Janko M, Wiertlewski M, Visell Y. Contact geometry and mechanics predict friction forces during tactile surface exploration. Sci Rep 2018; 8:4868. [PMID: 29559728 PMCID: PMC5861050 DOI: 10.1038/s41598-018-23150-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as “tactile blind spots”. The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.
Collapse
Affiliation(s)
- Marco Janko
- Drexel University, Department of Electrical and Computer Engineering, Philadelphia, 19104, USA
| | | | - Yon Visell
- University of California, Department of Electrical and Computer Engineering, Media Arts & Technology Program, and Department of Mechanical Engineering, Santa Barbara, California, 93106, USA.
| |
Collapse
|
33
|
Gueorguiev D, Vezzoli E, Mouraux A, Lemaire-Semail B, Thonnard JL. The tactile perception of transient changes in friction. J R Soc Interface 2017; 14:20170641. [PMID: 29212757 PMCID: PMC5746570 DOI: 10.1098/rsif.2017.0641] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/14/2017] [Indexed: 01/25/2023] Open
Abstract
When we touch an object or explore a texture, frictional strains are induced by the tactile interactions with the surface of the object. Little is known about how these interactions are perceived, although it becomes crucial for the nascent industry of interactive displays with haptic feedback (e.g. smartphones and tablets) where tactile feedback based on friction modulation is particularly relevant. To investigate the human perception of frictional strains, we mounted a high-fidelity friction modulating ultrasonic device on a robotic platform performing controlled rubbing of the fingertip and asked participants to detect induced decreases of friction during a forced-choice task. The ability to perceive the changes in friction was found to follow Weber's Law of just noticeable differences, as it consistently depended on the ratio between the reduction in tangential force and the pre-stimulation tangential force. The Weber fraction was 0.11 in all conditions demonstrating a very high sensitivity to transient changes in friction. Humid fingers experienced less friction reduction than drier ones for the same intensity of ultrasonic vibration but the Weber fraction for detecting changes in friction was not influenced by the humidity of the skin.
Collapse
Affiliation(s)
- David Gueorguiev
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- INRIA Lille Nord-Europe, 59650 Villeneuve d'Asq, France
| | - Eric Vezzoli
- Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP - Laboratoire d'Electrotechnique et d'Electronique de Puissance, 59000 Lille, France
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Betty Lemaire-Semail
- Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP - Laboratoire d'Electrotechnique et d'Electronique de Puissance, 59000 Lille, France
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Physical and Rehabilitation Medicine Department, Université catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
34
|
Chen Z, Shao X, He X, Wu J, Xu X, Zhang J. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 28901052 DOI: 10.1117/1.jbo.22.9.095001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
Collapse
Affiliation(s)
- Zhenning Chen
- Southeast University, Department of Engineering Mechanics, Nanjing, China
- University of Toronto, Faculty of Dentistry, Toronto, Ontario, Canada
| | - Xinxing Shao
- Southeast University, Department of Engineering Mechanics, Nanjing, China
| | - Xiaoyuan He
- Southeast University, Department of Engineering Mechanics, Nanjing, China
| | - Jialin Wu
- Southeast University, Department of Engineering Mechanics, Nanjing, China
| | - Xiangyang Xu
- Southeast University, Department of Engineering Mechanics, Nanjing, China
| | - Jinlin Zhang
- Southeast University, Department of Engineering Mechanics, Nanjing, China
| |
Collapse
|
35
|
Simulating tactile signals from the whole hand with millisecond precision. Proc Natl Acad Sci U S A 2017; 114:E5693-E5702. [PMID: 28652360 DOI: 10.1073/pnas.1704856114] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When we grasp and manipulate an object, populations of tactile nerve fibers become activated and convey information about the shape, size, and texture of the object and its motion across the skin. The response properties of tactile fibers have been extensively characterized in single-unit recordings, yielding important insights into how individual fibers encode tactile information. A recurring finding in this extensive body of work is that stimulus information is distributed over many fibers. However, our understanding of population-level representations remains primitive. To fill this gap, we have developed a model to simulate the responses of all tactile fibers innervating the glabrous skin of the hand to any spatiotemporal stimulus applied to the skin. The model first reconstructs the stresses experienced by mechanoreceptors when the skin is deformed and then simulates the spiking response that would be produced in the nerve fiber innervating that receptor. By simulating skin deformations across the palmar surface of the hand and tiling it with receptors at their known densities, we reconstruct the responses of entire populations of nerve fibers. We show that the simulated responses closely match their measured counterparts, down to the precise timing of the evoked spikes, across a wide variety of experimental conditions sampled from the literature. We then conduct three virtual experiments to illustrate how the simulation can provide powerful insights into population coding in touch. Finally, we discuss how the model provides a means to establish naturalistic artificial touch in bionic hands.
Collapse
|
36
|
Crevecoeur F, Barrea A, Libouton X, Thonnard JL, Lefèvre P. Multisensory components of rapid motor responses to fingertip loading. J Neurophysiol 2017; 118:331-343. [PMID: 28468992 DOI: 10.1152/jn.00091.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Abstract
Tactile and muscle afferents provide critical sensory information for grasp control, yet the contribution of each sensory system during online control has not been clearly identified. More precisely, it is unknown how these two sensory systems participate in online control of digit forces following perturbations to held objects. To address this issue, we investigated motor responses in the context of fingertip loading, which parallels the impact of perturbations to held objects on finger motion and fingerpad deformation, and characterized surface recordings of intrinsic (first dorsal interosseous, FDI) and extrinsic (flexor digitorum superficialis, FDS) hand muscles based on statistical modeling. We designed a series of experiments probing the effects of peripheral stimulation with or without anesthesia of the finger, and of task instructions. Loading of the fingertip generated a motor response in FDI at ~60 ms following the perturbation onset, which was only driven by muscle stretch, as the ring-block anesthesia reduced the gain of the response occurring later than 90 ms, leaving responses occurring before this time unaffected. In contrast, the motor response in FDS was independent of the lateral motion of the finger. This response started at ~90 ms on average and was immediately adjusted to task demands. Altogether these results highlight how a rapid integration of partially distinct sensorimotor circuits supports rapid motor responses to fingertip loading.NEW & NOTEWORTHY To grasp and manipulate objects, the brain uses touch signals related to skin deformation as well as sensory information about motion of the fingers encoded in muscle spindles. Here we investigated how these two sensory systems contribute to feedback responses to perturbation applied to the fingertip. We found distinct response components, suggesting that each sensory system engages separate sensorimotor circuits with distinct functions and latencies.
Collapse
Affiliation(s)
- F Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Barrea
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - X Libouton
- Cliniques Universitaire Saint-Luc, Université catholique de Louvain, Louvain-la-Neuve, Belgium; and
| | - J-L Thonnard
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Physical and Rehabilitation Medicine Department, Cliniques Universitaire Saint-Luc, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium; .,Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
37
|
Schwarz C. The Slip Hypothesis: Tactile Perception and its Neuronal Bases. Trends Neurosci 2016; 39:449-462. [PMID: 27311927 DOI: 10.1016/j.tins.2016.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/26/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
The slip hypothesis of epicritic tactile perception interprets actively moving sensor and touched objects as a frictional system, known to lead to jerky relative movements called 'slips'. These slips depend on object geometry, forces, material properties, and environmental factors, and, thus, have the power to incorporate coding of the perceptual target, as well as perceptual strategies (sensor movement). Tactile information as transferred by slips will be encoded discontinuously in space and time, because slips sometimes engage only parts of the touching surfaces and appear as discrete and rare events in time. This discontinuity may have forced tactile systems of vibrissae and fingertips to evolve special ways to convert touch signals to a tactile percept.
Collapse
Affiliation(s)
- Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Systems Neurophysiology, Eberhard Karls University, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Department for Cognitive Neurology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|