1
|
Hageb A, Thalheim T, Nattamai KJ, Möhrle B, Saçma M, Sakk V, Thielecke L, Cornils K, Grandy C, Port F, Gottschalk KE, Mallm JP, Glauche I, Galle J, Mulaw MA, Geiger H. Reduced adhesion of aged intestinal stem cells contributes to an accelerated clonal drift. Life Sci Alliance 2022; 5:5/8/e202201408. [PMID: 35487692 PMCID: PMC9057243 DOI: 10.26508/lsa.202201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Analysis of clonal dynamics of intestinal stem cells supports an accelerated clonal drift upon aging, likely because of reduced adhesion of aged ISCs because of reduced canonical Wnt signaling. Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model. However, it is not clear whether the drift model is still valid in aged ISCs. Tracking of clonal dynamics by clonal tracing revealed that aged crypts drift into monoclonality substantially faster than young ones. However, ISC tracing experiments, in vivo and ex vivo, implied a similar clonal expansion ability of both young and aged ISCs. Single-cell RNA sequencing for 1,920 high Lgr5 ISCs from young and aged mice revealed increased heterogeneity among subgroups of aged ISCs. Genes associated with cell adhesion were down-regulated in aged ISCs. ISCs of aged mice indeed show weaker adhesion to the matrix. Simulations applying a single cell–based model of the small intestinal crypt demonstrated an accelerated clonal drift at reduced adhesion strength, implying a central role for reduced adhesion for affecting clonal dynamics upon aging.
Collapse
Affiliation(s)
- Ali Hageb
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Torsten Thalheim
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Bettina Möhrle
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Cornils
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Grandy
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Fabian Port
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Kay-E Gottschalk
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Jörg Galle
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Medhanie A Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Hofmann F, Thalheim T, Rother K, Quaas M, Kerner C, Przybilla J, Aust G, Galle J. How to Obtain a Mega-Intestine with Normal Morphology: In Silico Modelling of Postnatal Intestinal Growth in a Cd97-Transgenic Mouse. Int J Mol Sci 2021; 22:ijms22147345. [PMID: 34298973 PMCID: PMC8305140 DOI: 10.3390/ijms22147345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Intestinal cylindrical growth peaks in mice a few weeks after birth, simultaneously with crypt fission activity. It nearly stops after weaning and cannot be reactivated later. Transgenic mice expressing Cd97/Adgre5 in the intestinal epithelium develop a mega-intestine with normal microscopic morphology in adult mice. Here, we demonstrate premature intestinal differentiation in Cd97/Adgre5 transgenic mice at both the cellular and molecular levels until postnatal day 14. Subsequently, the growth of the intestinal epithelium becomes activated and its maturation suppressed. These changes are paralleled by postnatal regulation of growth factors and by an increased expression of secretory cell markers, suggesting growth activation of non-epithelial tissue layers as the origin of enforced tissue growth. To understand postnatal intestinal growth mechanistically, we study epithelial fate decisions during this period with the use of a 3D individual cell-based computer model. In the model, the expansion of the intestinal stem cell (SC) population, a prerequisite for crypt fission, is largely independent of the tissue growth rate and is therefore not spontaneously adaptive. Accordingly, the model suggests that, besides the growth activation of non-epithelial tissue layers, the formation of a mega-intestine requires a released growth control in the epithelium, enabling accelerated SC expansion. The similar intestinal morphology in Cd97/Adgre5 transgenic and wild type mice indicates a synchronization of tissue growth and SC expansion, likely by a crypt density-controlled contact inhibition of growth of intestinal SC proliferation. The formation of a mega-intestine with normal microscopic morphology turns out to originate in changes of autonomous and conditional specification of the intestinal cell fate induced by the activation of Cd97/Adgre5.
Collapse
Affiliation(s)
- Felix Hofmann
- Research Laboratories, Department of Surgery, Leipzig University, 04107 Leipzig, Germany; (K.R.); (M.Q.); (C.K.); (G.A.)
- Correspondence: (F.H.); (T.T.)
| | - Torsten Thalheim
- Interdisciplinary Institute for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany;
- Correspondence: (F.H.); (T.T.)
| | - Karen Rother
- Research Laboratories, Department of Surgery, Leipzig University, 04107 Leipzig, Germany; (K.R.); (M.Q.); (C.K.); (G.A.)
- Interdisciplinary Institute for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany;
| | - Marianne Quaas
- Research Laboratories, Department of Surgery, Leipzig University, 04107 Leipzig, Germany; (K.R.); (M.Q.); (C.K.); (G.A.)
| | - Christiane Kerner
- Research Laboratories, Department of Surgery, Leipzig University, 04107 Leipzig, Germany; (K.R.); (M.Q.); (C.K.); (G.A.)
| | - Jens Przybilla
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, 04107 Leipzig, Germany;
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, Leipzig University, 04107 Leipzig, Germany; (K.R.); (M.Q.); (C.K.); (G.A.)
| | - Joerg Galle
- Interdisciplinary Institute for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany;
| |
Collapse
|
4
|
Pin C, Collins T, Gibbs M, Kimko H. Systems Modeling to Quantify Safety Risks in Early Drug Development: Using Bifurcation Analysis and Agent-Based Modeling as Examples. AAPS JOURNAL 2021; 23:77. [PMID: 34018069 PMCID: PMC8137611 DOI: 10.1208/s12248-021-00580-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Quantitative Systems Toxicology (QST) models, recapitulating pharmacokinetics and mechanism of action together with the organic response at multiple levels of biological organization, can provide predictions on the magnitude of injury and recovery dynamics to support study design and decision-making during drug development. Here, we highlight the application of QST models to predict toxicities of cancer treatments, such as cytopenia(s) and gastrointestinal adverse effects, where narrow therapeutic indexes need to be actively managed. The importance of bifurcation analysis is demonstrated in QST models of hematologic toxicity to understand how different regions of the parameter space generate different behaviors following cancer treatment, which results in asymptotically stable predictions, yet highly irregular for specific schedules, or oscillating predictions of blood cell levels. In addition, an agent-based model of the intestinal crypt was used to simulate how the spatial location of the injury within the crypt affects the villus disruption severity. We discuss the value of QST modeling approaches to support drug development and how they align with technological advances impacting trial design including patient selection, dose/regimen selection, and ultimately patient safety.
Collapse
Affiliation(s)
- Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Teresa Collins
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Megan Gibbs
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA.
| |
Collapse
|
5
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Dray N, Than-Trong E, Bally-Cuif L. Neural stem cell pools in the vertebrate adult brain: Homeostasis from cell-autonomous decisions or community rules? Bioessays 2020; 43:e2000228. [PMID: 33295062 DOI: 10.1002/bies.202000228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Adult stem cell populations must coordinate their own maintenance with the generation of differentiated cell types to sustain organ physiology, in a spatially controlled manner and over long periods. Quantitative analyses of clonal dynamics have revealed that, in epithelia, homeostasis is achieved at the population rather than at the single stem cell level, suggesting that feedback mechanisms coordinate stem cell maintenance and progeny generation. In the central nervous system, however, little is known of the possible community processes underlying neural stem cell maintenance. Recent work, in part based on intravital imaging made possible in the adult zebrafish, conclusively highlights that homeostasis in neural stem cell pools may rely on population asymmetry and long-term spatiotemporal coordination of neural stem cell states and fates. These results suggest that neural stem cell assemblies in the vertebrate brain behave as self-organized systems, such that the stem cells themselves generate their own intrinsic niche.
Collapse
Affiliation(s)
- Nicolas Dray
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France
| | - Emmanuel Than-Trong
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France.,Ecole doctorale Biosigne, Le Kremlin Bicêtre, Université Paris-Saclay, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France
| |
Collapse
|
7
|
Almet AA, Maini PK, Moulton DE, Byrne HM. Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Peters MF, Choy AL, Pin C, Leishman DJ, Moisan A, Ewart L, Guzzie-Peck PJ, Sura R, Keller DA, Scott CW, Kolaja KL. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. LAB ON A CHIP 2020; 20:1177-1190. [PMID: 32129356 DOI: 10.1039/c9lc01107b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-induced gastrointestinal toxicities (DI-GITs) are among the most common adverse events in clinical trials. High prevalence of DI-GIT has persisted among new drugs due in part to the lack of robust experimental tools to allow early detection or to guide optimization of safer molecules. Developing in vitro assays for the leading GI toxicities (nausea, vomiting, diarrhoea, constipation, and abdominal pain) will likely involve recapitulating complex physiological properties that require contributions from diverse cell/tissue types including epithelial, immune, microbiome, nerve, and muscle. While this stipulation may be beyond traditional 2D monocultures of intestinal cell lines, emerging 3D GI microtissues capture interactions between diverse cell and tissue types. These interactions give rise to microphysiologies fundamental to gut biology. For GI microtissues, organoid technology was the breakthrough that introduced intestinal stem cells with the capability of differentiating into each of the epithelial cell types and that self-organize into a multi-cellular tissue proxy with villus- and crypt-like domains. Recently, GI microtissues generated using miniaturized devices with microfluidic flow and cyclic peristaltic strain were shown to induce Caco2 cells to spontaneously differentiate into each of the principle intestinal epithelial cell types. Second generation models comprised of epithelial organoids or microtissues co-cultured with non-epithelial cell types can successfully reproduce cross-'tissue' functional interactions broadening the potential of these models to accurately study drug-induced toxicities. A new paradigm in which in vitro assays become an early part of GI safety assessment could be realized if microphysiological systems (MPS) are developed in alignment with drug-discovery needs. Herein, approaches for assessing GI toxicity of pharmaceuticals are reviewed and gaps are compared with capabilities of emerging GI microtissues (e.g., organoids, organ-on-a-chip, transwell systems) in order to provide perspective on the assay features needed for MPS models to be adopted for DI-GIT assessment.
Collapse
Affiliation(s)
- Matthew F Peters
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thalheim T, Hopp L, Herberg M, Siebert S, Kerner C, Quaas M, Schweiger MR, Aust G, Galle J. Fighting Against Promoter DNA Hyper-Methylation: Protective Histone Modification Profiles of Stress-Resistant Intestinal Stem Cells. Int J Mol Sci 2020; 21:ijms21061941. [PMID: 32178409 PMCID: PMC7139626 DOI: 10.3390/ijms21061941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Recently, we have suggested that promoter DNA hyper-methylation originates in DNA repair and that even successful DNA repair might confer this kind of epigenetic long-term change. Here, we ask for interrelations between promoter DNA methylation and histone modification changes observed in the intestine weeks after irradiation and/or following Msh2 loss. We focus on H3K4me3 recruitment to the promoter of H3K27me3 target genes. By RNA- and histone ChIP-sequencing, we demonstrate that this recruitment occurs without changes of the average gene transcription and does not involve H3K9me3. Applying a mathematical model of epigenetic regulation of transcription, we show that the recruitment can be explained by stronger DNA binding of H3K4me3 and H3K27me3 histone methyl-transferases as a consequence of lower DNA methylation. This scenario implicates stable transcription despite of H3K4me3 recruitment, in agreement with our RNA-seq data. Following several kinds of stress, including moderate irradiation, stress-sensitive intestinal stem cell (ISCs) are known to become replaced by more resistant populations. Our simulation results suggest that the stress-resistant ISCs are largely protected against promoter hyper-methylation of H3K27me3 target genes.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Center for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany; (T.T.); (L.H.); (M.H.)
| | - Lydia Hopp
- Interdisciplinary Center for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany; (T.T.); (L.H.); (M.H.)
| | - Maria Herberg
- Interdisciplinary Center for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany; (T.T.); (L.H.); (M.H.)
| | - Susann Siebert
- Laboratory for Translational Epigenetics and Tumor Genetics, University Hospital Cologne, 50391 Cologne, Germany; (S.S.); (M.R.S.)
- Center for Molecular Medicine Cologne, CMMC, 50391 Cologne, Germany
| | - Christiane Kerner
- Department of Surgery, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (C.K.); (M.Q.); (G.A.)
| | - Marianne Quaas
- Department of Surgery, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (C.K.); (M.Q.); (G.A.)
| | - Michal R. Schweiger
- Laboratory for Translational Epigenetics and Tumor Genetics, University Hospital Cologne, 50391 Cologne, Germany; (S.S.); (M.R.S.)
- Center for Molecular Medicine Cologne, CMMC, 50391 Cologne, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (C.K.); (M.Q.); (G.A.)
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics (IZBI), Leipzig University, 04107 Leipzig, Germany; (T.T.); (L.H.); (M.H.)
- Correspondence:
| |
Collapse
|
10
|
Insights into the quantitative and dynamic aspects of Cell Competition. Curr Opin Cell Biol 2019; 60:68-74. [DOI: 10.1016/j.ceb.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
|
11
|
Győrgy R, Klontzas ME, Kostoglou M, Panoskaltsis N, Mantalaris A, Georgiadis MC. Capturing Mesenchymal Stem Cell Heterogeneity during Osteogenic Differentiation: An Experimental–Modeling Approach. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Romuald Győrgy
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Michail E. Klontzas
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- School of Medicine, Emory University, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Margaritis Kostoglou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nicki Panoskaltsis
- School of Medicine, Emory University, Atlanta, Georgia 30332, United States
- Department of Haematology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael C. Georgiadis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
12
|
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2019; 15:rsif.2017.0703. [PMID: 29367239 DOI: 10.1098/rsif.2017.0703] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dmitry A Markov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
13
|
Linking DNA Damage and Age-Related Promoter DNA Hyper-Methylation in the Intestine. Genes (Basel) 2018; 9:genes9010017. [PMID: 29303998 PMCID: PMC5793170 DOI: 10.3390/genes9010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Here, we explore whether and how DNA damage repair might impact on these time-dependent changes, in particular in proliferative intestinal stem cells. We introduce a 3D multiscale computer model of intestinal crypts enabling simulation of aberrant DNA and histone methylation of gene promoters during aging. We assume histone state-dependent activity of de novo DNA methyltransferases (DNMTs) and methylation-dependent binding of maintenance DNMTs to CpGs. We simulate aging with and without repeated DNA repair. Motivated by recent findings on the histone demethylase KDM2b, we consider that DNA repair is associated with chromatin opening and improved recruitment of de novo DNMTs. Our results suggest that methylation-dependent binding of maintenance DNMTs to CpGs, establishing bistable DNA methylation states, is a prerequisite to promoter hyper-methylation following DNA repair. With this, the transient increase in de novo DNMT activity during repair can induce switches from low to high methylation states. These states remain stable after repair, leading to an epigenetic drift. The switches are most frequent in genes with H3K27me3 modified promoters. Our model provides a mechanistic explanation on how even successful DNA repair might confer long term changes of the epigenome.
Collapse
|
14
|
Thalheim T, Quaas M, Herberg M, Braumann UD, Kerner C, Loeffler M, Aust G, Galle J. Linking stem cell function and growth pattern of intestinal organoids. Dev Biol 2017; 433:254-261. [PMID: 29198564 DOI: 10.1016/j.ydbio.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023]
Abstract
Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Marianne Quaas
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany; Department of Surgery, Research Laboratories, Leipzig University, .Liebigstr. 19, 04103 Leipzig, Germany
| | - Maria Herberg
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Ulf-Dietrich Braumann
- Faculty of Electrical Engineering and Information Technology, Leipzig University of Applied Sciences (HTWK), Wächterstraße 13, 04107 Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstraße 1, 04103 Leipzig, Germany
| | - Christiane Kerner
- Department of Surgery, Research Laboratories, Leipzig University, .Liebigstr. 19, 04103 Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, .Liebigstr. 19, 04103 Leipzig, Germany
| | - Joerg Galle
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
15
|
Du X, O'Brien LE, Riedel-Kruse IH. A Model for Adult Organ Resizing Demonstrates Stem Cell Scaling through a Tunable Commitment Rate. Biophys J 2017; 113:174-184. [PMID: 28700915 DOI: 10.1016/j.bpj.2017.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023] Open
Abstract
Many adult organs grow or shrink to accommodate different physiological demands. Often, as total cell number changes, stem cell number changes proportionally in a phenomenon called "stem cell scaling". The cellular behaviors that give rise to scaling are unknown. Here we study two complementary theoretical models of the adult Drosophila midgut, a stem cell-based organ with known resizing dynamics. First, we derive a differential equations model of midgut resizing and show that the in vivo kinetics of growth can be recapitulated if the rate of fate commitment depends on the tissue's stem cell proportion. Second, we develop a 2D simulation of the midgut and find that proportion-dependent commitment rate and stem cell scaling can arise phenomenologically from the stem cells' exploration of physical tissue space during its lifetime. Together, these models provide a biophysical understanding of how stem cell scaling is maintained during organ growth and shrinkage.
Collapse
Affiliation(s)
- XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California.
| | | |
Collapse
|