1
|
Hua QQH, Kültz D, Wiltshire K, Doubleday ZA, Gillanders BM. Projected ocean temperatures impair key proteins used in vision of octopus hatchlings. GLOBAL CHANGE BIOLOGY 2024; 30:e17255. [PMID: 38572638 DOI: 10.1111/gcb.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
Collapse
Affiliation(s)
- Qiaz Q H Hua
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Centre, University of California, Davis, USA
| | - Kathryn Wiltshire
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- South Australian Research and Development Institute, West Beach, South Australia
| | - Zoe A Doubleday
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Bronwyn M Gillanders
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
4
|
De Sio F, Imperadore P. Deciphering regeneration through non-model animals: A century of experiments on cephalopod mollusks and an outlook at the future. Front Cell Dev Biol 2023; 10:1072382. [PMID: 36699008 PMCID: PMC9868252 DOI: 10.3389/fcell.2022.1072382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The advent of marine stations in the last quarter of the 19th Century has given biologists the possibility of observing and experimenting upon myriad marine organisms. Among them, cephalopod mollusks have attracted great attention from the onset, thanks to their remarkable adaptability to captivity and a great number of biologically unique features including a sophisticate behavioral repertoire, remarkable body patterning capacities under direct neural control and the complexity of nervous system rivalling vertebrates. Surprisingly, the capacity to regenerate tissues and complex structures, such as appendages, albeit been known for centuries, has been understudied over the decades. Here, we will first review the limited in number, but fundamental studies on the subject published between 1920 and 1970 and discuss what they added to our knowledge of regeneration as a biological phenomenon. We will also speculate on how these relate to their epistemic and disciplinary context, setting the base for the study of regeneration in the taxon. We will then frame the peripherality of cephalopods in regeneration studies in relation with their experimental accessibility, and in comparison, with established models, either simpler (such as planarians), or more promising in terms of translation (urodeles). Last, we will explore the potential and growing relevance of cephalopods as prospective models of regeneration today, in the light of the novel opportunities provided by technological and methodological advances, to reconsider old problems and explore new ones. The recent development of cutting-edge technologies made available for cephalopods, like genome editing, is allowing for a number of important findings and opening the way toward new promising avenues. The contribution offered by cephalopods will increase our knowledge on regenerative mechanisms through cross-species comparison and will lead to a better understanding of the complex cellular and molecular machinery involved, shedding a light on the common pathways but also on the novel strategies different taxa evolved to promote regeneration of tissues and organs. Through the dialogue between biological/experimental and historical/contextual perspectives, this article will stimulate a discussion around the changing relations between availability of animal models and their specificity, technical and methodological developments and scientific trends in contemporary biology and medicine.
Collapse
Affiliation(s)
- Fabio De Sio
- Heinrich Heine Universität, Institut für Geschichte, Theorie und Ethik der Medizin, Centre for Health and Society, Medizinische Fakultät, Düsseldorf, Germany,*Correspondence: Fabio De Sio, ; Pamela Imperadore, ,
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy,Association for Cephalopod Research—CephRes, Napoli, Italy,*Correspondence: Fabio De Sio, ; Pamela Imperadore, ,
| |
Collapse
|
5
|
Imperadore P, Galli R, Winterhalder MJ, Zumbusch A, Uckermann O. Imaging Arm Regeneration: Label-Free Multiphoton Microscopy to Dissect the Process in Octopus vulgaris. Front Cell Dev Biol 2022; 10:814746. [PMID: 35186930 PMCID: PMC8855035 DOI: 10.3389/fcell.2022.814746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
Cephalopod mollusks are endowed with an impressive range of features that have captured the attention of scientists from different fields, the imaginations of artists, and the interests of the public. The ability to spontaneously regrow lost or damaged structures quickly and functionally is among one of the most notable peculiarities that cephalopods possess. Microscopical imaging techniques represent useful tools for investigating the regenerative processes in several species, from invertebrates to mammals. However, these techniques have had limited use in cephalopods mainly due to the paucity of specific and commercially available markers. In addition, the commonly used immunohistochemical staining methods provide data that are specific to the antigens studied. New microscopical methods were recently applied to vertebrates to investigate regenerative events. Among them, multiphoton microscopy appears promising. For instance, it does not depend on species-related epitopes, taking advantage of the specific characteristics of tissues and allowing for its use in a species-independent way. Here, we illustrate the results obtained by applying this label-free imaging technique to the injured arm of Octopus vulgaris, a complex structure often subject to injury in the wild. This approach allowed for the characterization of the entire tissue arm architecture (muscular layers, nerve component, connective tissues, etc.) and elements usually hardly detectable (such as vessels, hemocytes, and chromatophores). More importantly, it also provided morpho-chemical information which helped decipher the regenerative phases after damage, from healing to complete arm regrowth, thereby appearing promising for regenerative studies in cephalopods and other non-model species.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Napoli, Italy
- Association for Cephalopod Research—CephRes, Napoli, Italy
- *Correspondence: Pamela Imperadore, ,
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, TU Dresden, Dresden, Germany
- Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
7
|
Adhikary S, Hui SP. The loss of regeneration competency in the animal kingdom at the expense of immunity: A journey in retrospect. Brain Behav Immun 2021; 94:8-10. [PMID: 33588075 DOI: 10.1016/j.bbi.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Regeneration refers to the structural growth of damaged organs or tissues and their functional integration into the existing system. Injury induced regenerative response is extremely variable across the animal kingdom. On one hand the early acoelomates can reform the entire animal even from dissociated cells, on the other; the capacity in humans is mostly restricted to wound healing. A general trend of regenerative ability is the existence of an inverse relationship between the robustness of immune system and the degree of regeneration throughout the animal kingdom. This review summarizes the evolutionary advancement of immune system in different groups and gives an account of their respective regenerative competency.
Collapse
Affiliation(s)
- Satadal Adhikary
- Post Graduate Department of Zoology, ABN Seal College, Cooch Behar 736101, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
8
|
Imperadore P, Parazzoli D, Oldani A, Duebbert M, Büschges A, Fiorito G. From injury to full repair: nerve regeneration and functional recovery in the common octopus, Octopus vulgaris. ACTA ACUST UNITED AC 2019; 222:jeb.209965. [PMID: 31527179 DOI: 10.1242/jeb.209965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Spontaneous nerve regeneration in cephalopod molluscs occurs in a relative short time after injury, achieving functional recovery of lost capacity. In particular, transection of the pallial nerve in the common octopus (Octopus vulgaris) determines the loss and subsequent restoration of two functions fundamental for survival, i.e. breathing and skin patterning, the latter involved in communication between animals and concealment. The phenomena occurring after lesion have been investigated in a series of previous studies, but a complete analysis of the changes taking place at the level of the axons and the effects on the animals' appearance during the whole regenerative process is still missing. Our goal was to determine the course of events following injury, from impairment to full recovery. Through imaging of the traced damaged nerves, we were able to characterize the pathways followed by fibres during regeneration and end-target re-innervation, while electrophysiology and behavioural observations highlighted the regaining of functional connections between the central brain and periphery, using the contralateral nerve in the same animal as an internal control. The final architecture of a fully regenerated pallial nerve does not exactly mirror the original structure; however, functionality returns to match the phenotype of an intact octopus with no observable impact on the behaviour of the animal. Our findings provide new important scenarios for the study of regeneration in cephalopods and highlight the octopus pallial nerve as a valuable 'model' among invertebrates.
Collapse
Affiliation(s)
- Pamela Imperadore
- Association for Cephalopod Research - CephRes, 80133 Napoli, Italy .,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Amanda Oldani
- IFOM-FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Michael Duebbert
- Institute for Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| | - Ansgar Büschges
- Institute for Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
9
|
Naser Moghadasi A. When an octopus has MS: Application of neurophysiology and immunology of octopuses for multiple sclerosis. Med Hypotheses 2019; 131:109297. [PMID: 31443774 DOI: 10.1016/j.mehy.2019.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease which can cause different symptoms due to the involvement of different regions of the central nervous system (CNS). Although this disease is characterized by the demyelination process, the most important feature of the disease is its degenerative nature. This nature is clinically manifested as progressive symptoms, especially in patients' walking, which can even lead to complete debilitation. Therefore, finding a treatment to prevent the degenerative processes is one of the most important goals in MS studies. To better understand the process and the effect of drugs, scientists use animal models which mostly consisting of mouse, rat, and monkey. In evolutionary terms, octopuses belong to the invertebrates which have many substantial differences with vertebrates. One of these differences is related to the nervous system of these organisms, which is divided into central and peripheral parts. The difference lies in the fact that the main volume of this system expands in the limbs of these organisms instead of their brain. This offers a kind of freedom of action and processing strength in the octopus limbs. Also, the brain of these organisms follows a non-somatotopic model. Although the complex actions of this organism are stimulated by the brain, in contrast to the human brain, this activity is not related to a specific region of the brain; rather the entire brain area of the octopus is activated during a process. Indeed, the brain mapping or the topological perception of a particular action, such as moving the limbs, reflects itself in how that activity is distributed in the octopus brain neurons. Accordingly, various actions are known with varying degrees of activity of neurons in the brain of octopus. Another important feature of octopuses is their ability to regenerate defective tissues including the central and peripheral nervous system. These characteristics raise the question of what features can an octopus show when it is used as an organism to create experimental autoimmune encephalomyelitis (EAE). Can the immune system damage of the octopus brain cause a regeneration process? Will the autonomy of the organs reduce the severity of the symptoms? This article seeks to provide evidence to prove that use of octopuses as laboratory samples for generation of EAE may open up new approaches for researchers to better approach MS.
Collapse
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
The survey and reference assisted assembly of the Octopus vulgaris genome. Sci Data 2019; 6:13. [PMID: 30931949 PMCID: PMC6472339 DOI: 10.1038/s41597-019-0017-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
The common octopus, Octopus vulgaris, is an active marine predator known for the richness and plasticity of its behavioral repertoire, and remarkable learning and memory capabilities. Octopus and other coleoid cephalopods, cuttlefish and squid, possess the largest nervous system among invertebrates, both for cell counts and body to brain size. O. vulgaris has been at the center of a long-tradition of research into diverse aspects of its biology. To leverage research in this iconic species, we generated 270 Gb of genomic sequencing data, complementing those available for the only other sequenced congeneric octopus, Octopus bimaculoides. We show that both genomes are similar in size, but display different levels of heterozygosity and repeats. Our data give a first quantitative glimpse into the rate of coding and non-coding regions and support the view that hundreds of novel genes may have arisen independently despite the close phylogenetic distance. We furthermore describe a reference-guided assembly and an open genomic resource (CephRes-gdatabase), opening new avenues in the study of genomic novelties in cephalopods and their biology. Design Type(s) | species comparison design • sequence analysis objective • sequence assembly objective | Measurement Type(s) | whole genome sequencing assay | Technology Type(s) | DNA sequencing | Factor Type(s) | Sample Characteristic(s) | Octopus vulgaris • testis • ocean biome |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
11
|
Imperadore P, Fiorito G. Cephalopod Tissue Regeneration: Consolidating Over a Century of Knowledge. Front Physiol 2018; 9:593. [PMID: 29875692 PMCID: PMC5974545 DOI: 10.3389/fphys.2018.00593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Regeneration, a process consisting in regrowth of damaged structures and their functional recovery, is widespread in several phyla of the animal kingdom from lower invertebrates to mammals. Among the regeneration-competent species, the actual ability to restore the full form and function of the injured tissue varies greatly, from species being able to undergo whole-body and internal organ regeneration, to instances in which this ability is limited to a few tissues. Among invertebrates, cephalopod mollusks retain the ability to regenerate several structures (i.e., muscles, nerves, or entire appendages). Here we provide an overview of more than one-hundred studies carried out over the last 160 years of research. Despite the great effort, many aspects of tissue regeneration in cephalopods, including the associated molecular and cellular machinery, remain largely unexplored. Our approach is largely descriptive and aims to provide a reference to prior work thus to facilitate future research efforts. We believe such research may lead to important discoveries and approaches that can be applied to other animal taxa including higher vertebrates, as well as other research fields such as regenerative medicine.
Collapse
Affiliation(s)
- Pamela Imperadore
- Association for Cephalopod Research - CephRes, Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|