1
|
Speck O, Speck T. Is a Forest Fire a Natural Disaster? Investigating the Fire Tolerance of Various Tree Species-An Educational Module. Biomimetics (Basel) 2024; 9:114. [PMID: 38392160 PMCID: PMC10887004 DOI: 10.3390/biomimetics9020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Wildfires are unplanned conflagrations perceived as a threat by humans. However, fires are essential for the survival of fire-adapted plants. On the one hand, wildfires cause major damage worldwide, burning large areas of forests and landscapes, threatening towns and villages, and generating high levels of air pollution. On the other hand, fire-adapted plants (pyrophytes) in the fire landscapes of the Earth are able to survive exposure to heat (e.g., because of their thick bark, which protects their living tissue) and benefit from fire directly (e.g., fire initiates cone opening and seed release) or indirectly (e.g., fewer competing plants of fire-sensitive species remain, seeds germinate in the ash-fertilized soil). We present the experimental set-up and results of a fire experiment on bark samples used as a basis to assess the fire tolerance of various trees. Fire tolerance is defined as the ability of a tree to survive a surface fire (up to 200 °C and 5 min duration). The measure of the fire tolerance for a tree species is the time taken for the vascular cambium under the insulating bark to reach the critical temperature of 60 °C. Within an educational module, we provide worksheets for teachers and students enabling them to analyze the fire tolerance of various tree barks.
Collapse
Affiliation(s)
- Olga Speck
- Cluster of Excellence liv MatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Plant Biomechanics Group @ Botanic Garden Freiburg, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Thomas Speck
- Cluster of Excellence liv MatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Plant Biomechanics Group @ Botanic Garden Freiburg, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Zhong J, Huang W, Zhou H. Multifunctionality in Nature: Structure-Function Relationships in Biological Materials. Biomimetics (Basel) 2023; 8:284. [PMID: 37504172 PMCID: PMC10807375 DOI: 10.3390/biomimetics8030284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
Collapse
Affiliation(s)
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.Z.); (H.Z.)
| | | |
Collapse
|
3
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
4
|
Hesse L, Kampowski T, Leupold J, Caliaro S, Speck T, Speck O. Comparative Analyses of the Self-Sealing Mechanisms in Leaves of Delosperma cooperi and Delosperma ecklonis (Aizoaceae). Int J Mol Sci 2020; 21:ijms21165768. [PMID: 32796721 PMCID: PMC7460835 DOI: 10.3390/ijms21165768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Within the Aizoaceae, the genus Delosperma exhibits a vast diversification colonizing various ecological niches in South-Africa and showing evolutionary adaptations to dry habitats that might include rapid self-sealing. Leaves of Delosperma react to external damage by the bending or contraction of the entire leaf until wound edges are brought into contact. A study of leaf morphology and anatomy, biomechanics of entire leaves and individual tissues and self-sealing kinematics after a ring incision under low and high relative humidity (RH) was carried out comparing the closely related species Delosperma cooperi and Delosperma ecklonis, which are indigenous to semi-arid highlands and regions with an oceanic climate, respectively. For both species, the absolute contractions of the examined leaf segments ("apex", "incision", "base") were more pronounced at low RH levels. Independent of the given RH level, the absolute contractions within the incision region of D. cooperi were significantly higher than in all other segments of this species and of D. ecklonis. The more pronounced contraction of D. cooperi leaves was linked mainly to the elastic properties of the central vascular strand, which is approximately twice as flexible as that of D. ecklonis leaves.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (T.K.); (S.C.); (T.S.); (O.S.)
- Correspondence: ; Tel.: +49-761-203-2930
| | - Tim Kampowski
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (T.K.); (S.C.); (T.S.); (O.S.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Sandra Caliaro
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (T.K.); (S.C.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (T.K.); (S.C.); (T.S.); (O.S.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (T.K.); (S.C.); (T.S.); (O.S.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Soffiatti P, Rowe NP. Mechanical Innovations of a Climbing Cactus: Functional Insights for a New Generation of Growing Robots. Front Robot AI 2020; 7:64. [PMID: 33501232 PMCID: PMC7806016 DOI: 10.3389/frobt.2020.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/23/2022] Open
Abstract
Climbing plants are being increasingly viewed as models for bioinspired growing robots capable of spanning voids and attaching to diverse substrates. We explore the functional traits of the climbing cactus Selenicereus setaceus (Cactaceae) from the Atlantic forest of Brazil and discuss the potential of these traits for robotics applications. The plant is capable of growing through highly unstructured habitats and attaching to variable substrates including soil, leaf litter, tree surfaces, rocks, and fine branches of tree canopies in wind-blown conditions. Stems develop highly variable cross-sectional geometries at different stages of growth. They include cylindrical basal stems, triangular climbing stems and apical star-shaped stems searching for supports. Searcher stems develop relatively rigid properties for a given cross-sectional area and are capable of spanning voids of up to 1 m. Optimization of rigidity in searcher stems provide some potential design ideas for additive engineering technologies where climbing robotic artifacts must limit materials and mass for curbing bending moments and buckling while climbing and searching. A two-step attachment mechanism involves deployment of recurved, multi-angled spines that grapple on to wide ranging surfaces holding the stem in place for more solid attachment via root growth from the stem. The cactus is an instructive example of how light mass searchers with a winged profile and two step attachment strategies can facilitate traversing voids and making reliable attachment to a wide range of supports and surfaces.
Collapse
Affiliation(s)
- Patricia Soffiatti
- Department of Botany, Federal University of Parana State (UFPR), Curitiba, Brazil
| | - Nick P. Rowe
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
6
|
Tetsch L. Manche mögen's heiß! CHEM UNSERER ZEIT 2019. [DOI: 10.1002/ciuz.201980051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Speck O, Speck T. An Overview of Bioinspired and Biomimetic Self-Repairing Materials. Biomimetics (Basel) 2019; 4:E26. [PMID: 31105211 PMCID: PMC6477613 DOI: 10.3390/biomimetics4010026] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
During the 3.8 billion years of biological evolution, a multitude of functional principles has been developed in all kingdoms of life enabling the sealing and healing of diverse types of damage. Inspired by this treasure trove, biologists and engineers have become increasingly interested in learning from biological insights for the development of self-repairing materials. In this review, particular attention is paid to the systematic transfer of knowledge from wound reactions in biological role models to technical applications with self-repair function. This knowledge transfer includes bioinspiration in terms of the conscious implementation of an idea from nature or biomimetics in the form of a systematic transfer of underlying functional principles found in selected biological role models. The current overview presents a selection of breakthroughs regarding bioinspired or biomimetic self-repairing materials, including the initial basic publications and the recent publications of the last eight years. Each reviewed publication is presented with reference to three key criteria: (i) self-repair mechanisms in plants or animals as role models; (ii) knowledge transfer from living nature to technology; and (iii) bioinspired or biomimetic materials with self-repair function. Finally, damage control is discussed with a focus on damage prevention and damage management.
Collapse
Affiliation(s)
- Olga Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany.
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany.
| |
Collapse
|
8
|
Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science 2018; 362:543-547. [PMID: 30385570 DOI: 10.1126/science.aat8297] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bulk of Earth's biological materials consist of few base substances-essentially proteins, polysaccharides, and minerals-that assemble into large varieties of structures. Multifunctionality arises naturally from this structural complexity: An example is the combination of rigidity and flexibility in protein-based teeth of the squid sucker ring. Other examples are time-delayed actuation in plant seed pods triggered by environmental signals, such as fire and water, and surface nanostructures that combine light manipulation with mechanical protection or water repellency. Bioinspired engineering transfers some of these structural principles into technically more relevant base materials to obtain new, often unexpected combinations of material properties. Less appreciated is the huge potential of using bioinspired structural complexity to avoid unnecessary chemical diversity, enabling easier recycling and, thus, a more sustainable materials economy.
Collapse
Affiliation(s)
- Michaela Eder
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany.
| |
Collapse
|