1
|
Jiang L, Zuo F, Pan Y, Li R, Shi Y, Huang X, Zhang D, Zhuang Y, Zhao Y, Lin Q, Yang Y, Zhu L, Chen X. Bright and Stable Cyan Fluorescent RNA Enables Multicolor RNA Imaging in Live Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405165. [PMID: 39466940 DOI: 10.1002/smll.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Indexed: 10/30/2024]
Abstract
Fluorescent RNAs (FRs), which are RNA aptamers that bind and activate their cognate small fluorogenic dyes, have provided a particularly useful approach for imaging RNAs in live cells. Although the color palette of FRs is greatly expanded, a bright and stable cyan FR with good biocompatibility and biorthogonality with currently available FRs remains desirable but is not yet developed. Herein, the development of Myosotis is described, an RNA aptamer that emits bright cyan fluorescence upon binding a novel GFP chromophore-like fluorophore called DBT. Myosotis has a nanomolar affinity for DBT and shows a weak dependence on magnesium for folding. Further studies reveal that the Myosotis-DBT complex has a long fluorescence lifetime, good photostability, and enhance cellular brightness. It is further shown that Myosotis-DBT is biorthogonal to Pepper and Clivia FRs, allowing multiplex fluorescence imaging of RNA in live bacteria. Myosotis can also use to image mRNA in live bacteria, revealing potential coupling between mRNA translation and stability. It is believed that this cyan FR will be a useful tool for studying the functionality and mechanism of RNA underlying diverse biological processes.
Collapse
Affiliation(s)
- Li Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Pan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Ruilong Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Dasheng Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
2
|
Howell J, Omwenga S, Jimenez M, Hammarton TC. Analysis of the Leishmania mexicana promastigote cell cycle using imaging flow cytometry provides new insights into cell cycle flexibility and events of short duration. PLoS One 2024; 19:e0311367. [PMID: 39361666 PMCID: PMC11449296 DOI: 10.1371/journal.pone.0311367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana. Firstly, we demonstrate that, unlike several other DNA stains, Vybrant™ DyeCycle™ Orange (DCO) is non-toxic and enables quantitative DNA imaging in live promastigotes. Secondly, by tagging the orphan spindle kinesin, KINF, with mNeonGreen, we describe KINF's cell cycle-dependent expression and localisation. Then, by combining manual gating of DCO DNA intensity profiles with automated masking and morphological measurements of parasite images, visual determination of the number of flagella per cell, and automated masking and analysis of mNG:KINF fluorescence, we provide a newly detailed description of L. mexicana promastigote cell cycle events that, for the first time, includes the durations of individual G2, mitosis and post-mitosis phases, and identifies G1 cells within the first 12 minutes of the new cell cycle. Our custom-developed masking and gating scheme allowed us to identify elusive G2 cells and to demonstrate that the CDK-inhibitor, flavopiridol, arrests cells in G2 phase, rather than mitosis, providing proof-of-principle of the utility of IFC for drug mechanism-of-action studies. Further, the high-throughput nature of IFC allowed the close examination of promastigote cytokinesis, revealing considerable flexibility in both the timing of cytokinesis initiation and the direction of furrowing, in contrast to the related kinetoplastid parasite, Trypanosoma brucei and many other cell types. Our new pipeline offers many advantages over traditional methods of cell cycle analysis such as fluorescence microscopy and flow cytometry and paves the way for novel high-throughput analysis of Leishmania cell division.
Collapse
Affiliation(s)
- Jessie Howell
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sulochana Omwenga
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Melanie Jimenez
- Biomedical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Horiuchi Y, Makabe K, Laskaratou D, Hatori K, Sliwa M, Mizuno H, Hotta JI. Cloning and structural basis of fluorescent protein color variants from identical species of sea anemone, Diadumene lineata. Photochem Photobiol Sci 2023:10.1007/s43630-023-00399-0. [PMID: 36943649 DOI: 10.1007/s43630-023-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Diadumene lineata is a colorful sea anemone with orange stripe tissue of the body column and plain tentacles with red lines. We subjected Diadumene lineata to expression cloning and obtained genes encoding orange (OFP: DiLiFP561) and red fluorescent proteins (RFPs: DiLiFP570 and DiLiFP571). These proteins formed obligatory tetramers. All three proteins showed bright fluorescence with the brightness of 58.3 mM-1·cm-1 (DiLiFP561), 43.9 mM-1·cm-1 (DiLiFP570), and 31.2 mM-1·cm-1 (DiLiFP571), which were equivalent to that of commonly used red fluorescent proteins. Amplitude-weighted average fluorescence lifetimes of DiLiFP561, DiLiFP570 and DiLiFP571 were determined as 3.7, 3.6 and 3.0 ns. We determined a crystal structure of DiLiFP570 at 1.63 Å resolution. The crystal structure of DiLiFP570 revealed that the chromophore has an extended π-conjugated structure similar to that of DsRed. Most of the amino acid residues surrounding the chromophore were common between DiLiFP570 and DiLiFP561, except M159 of DiLiFP570 (Lysine in DiLiFP561), which is located close to the chromophore hydroxyl group. Interestingly, a similar K-to-M substitution has been reported in a red-shifted variant of DsRed (mRFP1). It is a striking observation that the naturally evolved color-change variants are consistent with the mutation induced via protein engineering processes. The newly cloned proteins are promising as orange and red fluorescent markers for imaging with long fluorescence lifetime.
Collapse
Affiliation(s)
- Yuki Horiuchi
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Danai Laskaratou
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Kuniyuki Hatori
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000, Lille, France
| | - Hideaki Mizuno
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Jun-Ichi Hotta
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
4
|
Sun T, Li T, Yi K, Gao X. Structure-guided evolution of Green2 toward photostability and quantum yield enhancement by F145Y substitution. Protein Sci 2020; 29:1964-1974. [PMID: 32715541 DOI: 10.1002/pro.3917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
Quantum yield is a determinant for fluorescent protein (FP) applications and enhancing FP brightness through gene engineering is still a challenge. Green2, our de novo FP synthesized by microfluidic picoarray and cloning, has a significantly lower quantum yield than enhanced green FP, though they have high homology and share the same chromophore. To increase its quantum yield, we introduced an F145Y substitution into Green2 based on rational structural analysis. Y145 significantly increased the quantum yield (0.22 vs. 0.18) and improved the photostability (t1/2 , 73.0 s vs. 46.0 s), but did not affect the excitation and emission spectra. Further structural analysis showed that the F145Y substitution resulted in a significant electrical field change in the immediate environment of the chromophore. The perturbation of electrostatic charge around the chromophore lead to energy barrier changes between the ground and excited states, which resulted in the enhancement of quantum yield and photostability. Our results illustrate a typical example of engineering an FP based solely on fluorescence efficiency optimization and provide novel insights into the rational evolution of FPs.
Collapse
Affiliation(s)
- Tingting Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| | - Tianpeng Li
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, China.,School of Environment, Henan Normal University, Xinxiang, Henan, China.,Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong, China
| | - Ke Yi
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|