1
|
Zdimal AM, Dio GD, Liu W, Aftab T, Collins T, Colin R, Shrivastava A. Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614802. [PMID: 39386520 PMCID: PMC11463409 DOI: 10.1101/2024.09.24.614802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The bacterial Type 9 Secretion System (T9SS) is essential for the development of periodontal diseases and Bacteroidetes gliding motility. T9SS-driven motile bacteria, abundant within the human oral microbiota, transport non-motile oral microbes and bacteriophages as cargo, shaping the spatial structure of polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
Collapse
|
2
|
Akter M, Kabir AMR, Keya JJ, Sada K, Asanuma H, Kakugo A. Localized Control of the Swarming of Kinesin-Driven Microtubules Using Light. ACS OMEGA 2024; 9:37748-37753. [PMID: 39281908 PMCID: PMC11391547 DOI: 10.1021/acsomega.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48108, Michigan United States
| | | | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Akira Kakugo
- Department of Physics, Kyoto University, Kyoto 606-8224, Japan
| |
Collapse
|
3
|
Fylling C, Tamayo J, Gopinath A, Theillard M. Multi-population dissolution in confined active fluids. SOFT MATTER 2024; 20:1392-1409. [PMID: 38305767 DOI: 10.1039/d3sm01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings. Here, we present a new method for modeling such multi-population active fluids subject to confinement. We use a continuum multi-scale mean-field approach to represent each phase by its first three orientational moments and couple their evolution with those of the suspending fluid. The resulting coupled system is solved using a parallel adaptive level-set-based solver for high computational efficiency and maximal flexibility in the confinement geometry. Motivated by recent experimental work, we employ our method to study the spatiotemporal dynamics of confined bacterial suspensions and swarms dominated by fluid hydrodynamic effects. Our in silico explorations reproduce observed emergent collective patterns, including features of active dissolution in two-population active-passive swarms, with results clearly suggesting that hydrodynamic effects dominate dissolution dynamics. Our work lays the foundation for a systematic characterization and study of collective phenomena in natural or synthetic multi-population systems such as bacteria colonies, bird flocks, fish schools, colloid swimmers, or programmable active matter.
Collapse
Affiliation(s)
- Cayce Fylling
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Maxime Theillard
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| |
Collapse
|
4
|
Krajnc M, Fei C, Košmrlj A, Kalin M, Stopar D. Mechanical constraints to unbound expansion of B. subtilis on semi-solid surfaces. Microbiol Spectr 2024; 12:e0274023. [PMID: 38047692 PMCID: PMC10783106 DOI: 10.1128/spectrum.02740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE How bacterial cells colonize new territory is a problem of fundamental microbiological and biophysical interest and is key to the emergence of several phenomena of biological, ecological, and medical relevance. Here, we demonstrate how bacteria stuck in a colony of finite size can resume exploration of new territory by aquaplaning and how they fine tune biofilm viscoelasticity to surface material properties that allows them differential mobility. We show how changing local interfacial forces and colony viscosity results in a plethora of bacterial morphologies on surfaces with different physical and mechanical properties.
Collapse
Affiliation(s)
- Mojca Krajnc
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey, USA
| | - Mitjan Kalin
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Lu M, Deng J, Mao X, Brandt L. Dynamic Buckling of a Filament Impacted by a Falling Droplet. PHYSICAL REVIEW LETTERS 2023; 131:184002. [PMID: 37977627 DOI: 10.1103/physrevlett.131.184002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/23/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
We investigate the buckling dynamics of an elastic filament impacted axially by a falling liquid droplet, and identify the buckling modes through a combination of experimental and theoretical analyses. A phase diagram is constructed on a plane defined by two primary parameters: the falling height and the filament length. Two transition boundaries are observed, with one marking the occurrence of dynamic buckling and the other separating the buckling regime into two distinct modes. Notably, the hydrodynamic viscous force of the liquid dominates during the impact, with the dynamic buckling instability predicted by a single elastoviscous number. The critical load is twice the critical static load, which is, however, lower for the deformable droplet utilized in our study, as compared to a solid object. An additional time-dependent simulation on a longer filament exhibits a higher buckling mode, succeeded by a more distinct coarsening process than our experimental observations.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Deng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xuerui Mao
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Luca Brandt
- FLOW, Department of Engineering Mechanics, KTH, SE-100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Kumar P, Tamayo J, Shiu RF, Chin WC, Gopinath A. Size-Dependent Diffusion and Dispersion of Particles in Mucin. Polymers (Basel) 2023; 15:3241. [PMID: 37571134 PMCID: PMC10422640 DOI: 10.3390/polym15153241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Mucus, composed significantly of glycosylated mucins, is a soft and rheologically complex material that lines respiratory, reproductive, and gastrointestinal tracts in mammals. Mucus may present as a gel, as a highly viscous fluid, or as a viscoelastic fluid. Mucus acts as a barrier to the transport of harmful microbes and inhaled atmospheric pollutants to underlying cellular tissue. Studies on mucin gels have provided critical insights into the chemistry of the gels, their swelling kinetics, and the diffusion and permeability of molecular constituents such as water. The transport and dispersion of micron and sub-micron particles in mucin gels and solutions, however, differs from the motion of small molecules since the much larger tracers may interact with microstructure of the mucin network. Here, using brightfield and fluorescence microscopy, high-speed particle tracking, and passive microrheology, we study the thermally driven stochastic movement of 0.5-5.0 μm tracer particles in 10% mucin solutions at neutral pH, and in 10% mucin mixed with industrially relevant dust; specifically, unmodified limestone rock dust, modified limestone, and crystalline silica. Particle trajectories are used to calculate mean square displacements and the displacement probability distributions; these are then used to assess tracer diffusion and transport. Complex moduli are concomitantly extracted using established microrheology techniques. We find that under the conditions analyzed, the reconstituted mucin behaves as a weak viscoelastic fluid rather than as a viscoelastic gel. For small- to moderately sized tracers with a diameter of lessthan 2 μm, we find that effective diffusion coefficients follow the classical Stokes-Einstein relationship. Tracer diffusivity in dust-laden mucin is surprisingly larger than in bare mucin. Probability distributions of mean squared displacements suggest that heterogeneity, transient trapping, and electrostatic interactions impact dispersion and overall transport, especially for larger tracers. Our results motivate further exploration of physiochemical and rheological mechanisms mediating particle transport in mucin solutions and gels.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA; (P.K.); (J.T.)
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA; (P.K.); (J.T.)
| | - Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Wei-Chun Chin
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA; (P.K.); (J.T.)
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA; (P.K.); (J.T.)
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
7
|
Yang J, Ni R, Ciamarra MP. Interplay between jamming and motility-induced phase separation in persistent self-propelling particles. Phys Rev E 2022; 106:L012601. [PMID: 35974520 DOI: 10.1103/physreve.106.l012601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In living and engineered systems of active particles, self-propulsion induces an unjamming transition from a solid to a fluid phase and phase separation between a gas and a liquidlike phase. We demonstrate an interplay between these two nonequilibrium transitions in systems of persistent active particles. The coexistence and jamming lines in the activity-density plane meet at the jamming transition point in the limit of hard particles or zero activity. This interplay induces an anomalous dynamic in the liquid phase and hysteresis at the active jamming transition.
Collapse
Affiliation(s)
- Jing Yang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ran Ni
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- CNRS@CREATE LTD, 1 Create Way, 08-01 CREATE Tower, Singapore 138602
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
8
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200394. [PMID: 34455836 DOI: 10.1098/rsta.2020.0394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Bose S, Dasbiswas K, Gopinath A. Matrix Stiffness Modulates Mechanical Interactions and Promotes Contact between Motile Cells. Biomedicines 2021; 9:biomedicines9040428. [PMID: 33920918 PMCID: PMC8077938 DOI: 10.3390/biomedicines9040428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanical micro-environment of cells and tissues influences key aspects of cell structure and function, including cell motility. For proper tissue development, cells need to migrate, interact, and form contacts. Cells are known to exert contractile forces on underlying soft substrates and sense deformations in them. Here, we propose and analyze a minimal biophysical model for cell migration and long-range cell–cell interactions through mutual mechanical deformations of the substrate. We compute key metrics of cell motile behavior, such as the number of cell-cell contacts over a given time, the dispersion of cell trajectories, and the probability of permanent cell contact, and analyze how these depend on a cell motility parameter and substrate stiffness. Our results elucidate how cells may sense each other mechanically and generate coordinated movements and provide an extensible framework to further address both mechanical and short-range biophysical interactions.
Collapse
Affiliation(s)
- Subhaya Bose
- Department of Physics, University of California Merced, Merced, CA 95343, USA; (S.B.); (K.D.)
| | - Kinjal Dasbiswas
- Department of Physics, University of California Merced, Merced, CA 95343, USA; (S.B.); (K.D.)
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
- Correspondence:
| |
Collapse
|
10
|
Grobas I, Polin M, Asally M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 2021; 10:62632. [PMID: 33722344 PMCID: PMC7963483 DOI: 10.7554/elife.62632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using Bacillus subtilis, a model system for bacterial multicellularity. We discover that, upon exposure to a spatial gradient of kanamycin, swarming bacteria activate matrix genes and transit to biofilms. The initial stage of this transition is underpinned by a stress-induced multilayer formation, emerging from a biophysical mechanism reminiscent of motility-induced phase separation (MIPS). The physical nature of the process suggests that stressors which suppress the expansion of swarms would induce biofilm formation. Indeed, a simple physical barrier also induces a swarm-to-biofilm transition. Based on the gained insight, we propose a strategy of antibiotic treatment to inhibit the transition from swarms to biofilms by targeting the localized phase transition.
Collapse
Affiliation(s)
- Iago Grobas
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom
| | - Marco Polin
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom.,Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom.,Physics Department, University of Warwick, Coventry, United Kingdom.,Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), C/ Miquel Marqués, Balearic Islands, Spain
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Grobas I, Bazzoli DG, Asally M. Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem Soc Trans 2020; 48:2903-2913. [PMID: 33300966 PMCID: PMC7752047 DOI: 10.1042/bst20200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Bacteria can organise themselves into communities in the forms of biofilms and swarms. Through chemical and physical interactions between cells, these communities exhibit emergent properties that individual cells alone do not have. While bacterial communities have been mainly studied in the context of biochemistry and molecular biology, recent years have seen rapid advancements in the biophysical understanding of emergent phenomena through physical interactions in biofilms and swarms. Moreover, new technologies to control bacterial emergent behaviours by physical means are emerging in synthetic biology. Such technologies are particularly promising for developing engineered living materials (ELM) and devices and controlling contamination and biofouling. In this minireview, we overview recent studies unveiling physical and mechanical cues that trigger and affect swarming and biofilm development. In particular, we focus on cell shape, motion and density as the key parameters for mechanical cell-cell interactions within a community. We then showcase recent studies that use physical stimuli for patterning bacterial communities, altering collective behaviours and preventing biofilm formation. Finally, we discuss the future potential extension of biophysical and bioengineering research on microbial communities through computational modelling and deeper investigation of mechano-electrophysiological coupling.
Collapse
Affiliation(s)
- Iago Grobas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Dario G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
12
|
Liao X, Purohit PK, Gopinath A. Extensions of the worm-like-chain model to tethered active filaments under tension. J Chem Phys 2020; 153:194901. [PMID: 33218239 DOI: 10.1063/5.0025200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular elastic filaments such as microtubules are subject to thermal Brownian noise and active noise generated by molecular motors that convert chemical energy into mechanical work. Similarly, polymers in living fluids such as bacterial suspensions and swarms suffer bending deformations as they interact with single bacteria or with cell clusters. Often, these filaments perform mechanical functions and interact with their networked environment through cross-links or have other similar constraints placed on them. Here, we examine the mechanical properties-under tension-of such constrained active filaments under canonical boundary conditions motivated by experiments. Fluctuations in the filament shape are a consequence of two types of random forces-thermal Brownian forces and activity derived forces with specified time and space correlation functions. We derive force-extension relationships and expressions for the mean square deflections for tethered filaments under various boundary conditions including hinged and clamped constraints. The expressions for hinged-hinged boundary conditions are reminiscent of the worm-like-chain model and feature effective bending moduli and mode-dependent non-thermodynamic effective temperatures controlled by the imposed force and by the activity. Our results provide methods to estimate the activity by measurements of the force-extension relation of the filaments or their mean square deflections, which can be routinely performed using optical traps, tethered particle experiments, or other single molecule techniques.
Collapse
Affiliation(s)
- Xinyu Liao
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Prashant K Purohit
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
13
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Propagation of active nematic-isotropic interfaces on substrates. SOFT MATTER 2020; 16:4256-4266. [PMID: 32301453 DOI: 10.1039/c9sm02306b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motivated by results for the propagation of active-passive interfaces of bacterial Serratia marcescens swarms [Nat. Commun., 2018, 9, 5373], we used a hydrodynamic multiphase model to investigate the propagation of interfaces of active nematics on substrates. We characterized the active nematic phase of the model through the calculation of the spatial and temporal auto correlation functions and the energy spectrum and discussed its description of the statistical dynamics of the swarms reported in the experiment. We then studied the propagation of circular and flat active-passive interfaces. We found that the closing time of the circular passive domain decays quadratically with the activity and that the structure factor of the flat interface is similar to that reported for the swarms, with an activity dependent exponent. Finally, the effect of the substrate friction was investigated. We found an activity dependent threshold, above which the turbulent active nematic forms isolated islands that shrink until the system becomes isotropic and below which the active nematic expands, with a well defined propagating interface. We also found that the interface becomes static in the presence of a friction gradient.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | | |
Collapse
|
14
|
Fily Y, Subramanian P, Schneider TM, Chelakkot R, Gopinath A. Buckling instabilities and spatio-temporal dynamics of active elastic filaments. J R Soc Interface 2020; 17:20190794. [PMID: 32316880 DOI: 10.1098/rsif.2019.0794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biological filaments driven by molecular motors tend to experience tangential propulsive forces also known as active follower forces. When such a filament encounters an obstacle, it deforms, which reorients its follower forces and alters its entire motion. If the filament pushes a cargo, the friction on the cargo can be enough to deform the filament, thus affecting the transport properties of the cargo. Motivated by cytoskeletal filament motility assays, we study the dynamic buckling instabilities of a two-dimensional slender elastic filament driven through a dissipative medium by tangential propulsive forces in the presence of obstacles or cargo. We observe two distinct instabilities. When the filament's head is pinned or experiences significant translational but little rotational drag from its cargo, it buckles into a steadily rotating coiled state. When it is clamped or experiences both significant translational and rotational drag from its cargo, it buckles into a periodically beating, overall translating state. Using minimal analytically tractable models, linear stability theory and fully nonlinear computations, we study the onset of each buckling instability, characterize each buckled state, and map out the phase diagram of the system. Finally, we use particle-based Brownian dynamics simulations to show our main results are robust to moderate noise and steric repulsion. Overall, our results provide a unified framework to understand the dynamics of tangentially propelled filaments and filament-cargo assemblies.
Collapse
Affiliation(s)
- Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | | | - Tobias M Schneider
- Emergent Complexity in Physical Systems Laboratory (ECPS), Ecole Polytechnique Federale de Lausanne, CH 1015 Lausanne, Switzerland
| | | | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA, USA
| |
Collapse
|