1
|
Liu M, Chen R, Yuan J, Chen C, Peng Z, Chen S. Multimodal Splitting and Reciprocating Transport of Droplets on a Reprogrammable Functional Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4176-4184. [PMID: 39901334 DOI: 10.1021/acs.langmuir.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Droplet manipulations have important applications in many fields, especially droplet splitting and transport in aseptic operations or biochemical reagent analysis. However, droplet splitting or transport on existing functional surfaces is limited to predesigned microstructures or fixed patterns. It remains a challenge to realize reprogrammable surface microstructures for freely controllable droplet splitting and transport. In this study, a flexible technique for both the multimodal splitting and reciprocating transport of droplets on one surface is proposed. Such a surface is prepared with a facile fabrication method by premixing magnetic particles and softener into the polymer solvent matrix and immersing the solidified matrix in a lubricant. The movable wettability gradient is generated on the surface by an external magnetic field, which can act as an invisible "air knife" to split the droplet in multiple modes. The mechanism and critical conditions of droplet splitting are analyzed and revealed theoretically. Furthermore, the microstructural configurations and surface wettability can be reprogrammed by modulating the magnetic field strength and gradient. Accordingly, the splitting behavior of the droplet is transformed into the reciprocating transport behavior. The influencing factors of such behavior have also been analyzed. The reported reprogrammable manipulation of the droplet on one surface provides a versatile prototype for the actuation of droplets in microfluidic and biological analysis devices.
Collapse
Affiliation(s)
- Ming Liu
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Runan Chen
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Yuan
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Chen
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Zhilong Peng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaohua Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Ayali A, Sonnenreich S, El Pinchasik B. Bio-inspiration unveiled: Dissecting nature's designs through the lens of the female locust's oviposition mechanism. iScience 2024; 27:111378. [PMID: 39660054 PMCID: PMC11629315 DOI: 10.1016/j.isci.2024.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Investigating nature's ingenious designs and systems has become a cornerstone of innovation, influencing fields from robotics, biomechanics, and physics to material sciences. Two key questions, however, regarding bio-inspired innovation are those of how and where does one find bio-inspiration? The perspective presented here is aimed at providing insights into the evolving landscape of bio-inspiration discovery. We present the unique case of the female locust's oviposition as a valuable example for researchers and engineers seeking to pursue multifaceted research, encompassing diverse aspects of biological and bio-inspired systems. The female locust lays her eggs underground to protect them and provide them with optimal conditions for survival and hatching. To this end, she uses a dedicated apparatus comprising two pairs of special digging valves to propagate underground, while remarkably extending her abdomen by 2- to 3-fold its original length. The unique digging mechanism, the subterranean steering ability, and the extreme elongation of the abdomen, including the reversible extension of the abdominal central nervous system, all spark a variety of questions regarding materials, morphology, mechanisms, and their interactions in this complex biological system. We present the cross-discipline efforts to elucidate these fascinating questions, and provide future directions for developing bio-inspired technological innovations based on this remarkable biological system.
Collapse
Affiliation(s)
- Amir Ayali
- School of Zoology, Faculty of Life Sciences and Sagol School for Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shai Sonnenreich
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Bat El Pinchasik
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Liu S, Huang Q, Gao R, Yuan G, Li N, Liu Y, Zhang X, Chen Y, Wang M. Patterned Ultraslippery Surfaces of Stainless Steel Prepared by Femtosecond Laser Ablation for Directional Manipulation of Liquid Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20763-20772. [PMID: 39287408 DOI: 10.1021/acs.langmuir.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have promising applications in chip laboratories, nanofriction power generation, and microfluidics due to their excellent properties such as good hydrophobicity and low adhesion. However, the self-driven stability of conventionally lubricated surfaces is not high, and the velocity of liquid droplets is difficult to regulate. This greatly limits the potential applications of SLIPS. A strategy is offered to prepare microporous structures of SLIPS directly on a stainless-steel substrate using femtosecond laser processing technology as the main means to realize exhibiting smoothness to liquids. At the same time, the principle of bionics is utilized, the porous structure of SLIPS is combined with the groove structure of rice leaves, or porous structures are combined with the wedge structure of shorebird beak to prepare the three-dimensional structure of SLIPS. Droplets exhibit significant individual anisotropy on three-dimensional (3D) SLIPS of leaf-like groove stripe structure in rice, enabling the precise control of droplet motion direction. When droplets are transported in wedge-shaped SLIPS with an asymmetric structure, the wedge edge can limit the direction of droplet motion while squeezing the droplet to generate Laplace pressure gradient, which achieves continuous self-driven transport of droplets. In addition, based on the above two processing strategies, an information transfer device is designed: the splicing of the self-driven transport surface with anisotropic topological channels enables the differential drive for liquid transport, which provides the conditions for the information transfer of the droplets. This strategy not only is simple and efficient but also provides new ideas for the effective development of multifunctional SLIPS as well as lab-on-a-chip and microfluidic domains.
Collapse
Affiliation(s)
- Shengkai Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Qingyi Huang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Ruming Gao
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Guangli Yuan
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Nana Li
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yiting Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Xuhui Zhang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yulong Chen
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Meng Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
4
|
Lessware OC, Mantell JM, Bauer U. Carnivorous Nepenthes pitcher plants combine common developmental processes to make a complex epidermal trapping surface. ANNALS OF BOTANY 2024:mcae147. [PMID: 39240138 DOI: 10.1093/aob/mcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS A hierarchical micro-topography of ridges and steps renders the trap rim of carnivorous Nepenthes pitcher plants unusually wettable, and slippery for insects when wet. This complex three-dimensional epidermis structure forms, hidden from plain sight, inside the still-closed developing pitcher bud. Here, we reveal the sequence of epidermal patterning events that shape the trap rim. By linking this sequence to externally visible markers of bud development, we provide a framework for targeting individual stages of surface development in future studies. METHODS We used cryo-scanning electron microscopy to investigate the detailed morphogenesis and epidermal patterning of the Nepenthes x hookeriana pitcher rim. In addition, we collected morphometric and qualitative data from developing pitcher traps including those sampled for microscopy. KEY RESULTS We identified three consecutive patterning events. First, strictly oriented cell divisions resulted in radially aligned rows of cells and established a macroscopic ridge-and-groove pattern. Next, conical papillate cells formed, and papillae elongated towards the trap interior, increasingly overlapping adjacent cells and eventually forming continuous microscopic ridges. In between these ridges, the flattened papillae formed acutely angled arched steps. Finally, the cells elongated radially, thereby establishing the convex collar shape of the rim. This general sequence of surface development also showed a spatial progression from the outer to the inner trap rim edge, with several consecutive developmental stages co-occurring at any given time. CONCLUSIONS We demonstrate that the complex surface microtopography of the Nepenthes pitcher rim develops by sequentially combining widespread, evolutionarily conserved epidermal patterning processes in a new way. This makes the Nepenthes trap rim an excellent model for studying epidermal patterning mechanisms in leaves.
Collapse
Affiliation(s)
- Oona C Lessware
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ, Bristol, UK
| | - Judith M Mantell
- Wolfson Bioimaging Centre, School of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK
| | - Ulrike Bauer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK
| |
Collapse
|
5
|
Liu Y, Peng X, Zhu L, Jiang R, Liu J, Chen C. Liquid-Assisted Bionic Conical Needle for In-Air and In-Oil-Water Droplet Ultrafast Unidirectional Transportation and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59920-59930. [PMID: 38100412 DOI: 10.1021/acsami.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Learning from nature, many bionic materials and surfaces have been developed for the directional transportation of water and fog collection. However, current research mainly focuses on the self-transportation behavior of droplets in air-phase environments, rarely concerning underoil environments. Herein, in this work, a liquid-assisted bionic copper needle was fabricated for the rapid self-transportation of water droplets in air and oil environments. The water droplet can be spontaneously transported on the as-prepared bionic copper needle from the tip to the base. More importantly, the water-prewetted bionic copper needle can achieve the ultrafast unidirectional transportation of a water droplet in an oil environment, showing a maximum transport velocity of 76.2 mm/s and a transport distance over 33 mm, which were ten times higher than those reported in the previous research. Additionally, the droplet transport mechanism was revealed. The effects of the apex angle and tilt angle of the as-prepared bionic needle and droplet volume on the self-transportation behavior of water droplets were systematically investigated. The results indicated that the transport velocity of the water droplet decreased with the increase of the apex angle of the conical needle, while it increased with the increase of the droplet volume and needle tilt angle. Furthermore, the as-prepared bionic copper needle exhibited excellent fog collection performance with a single copper needle fog collecting efficiency of up to 2220 mg/h, which was 9.7 times that of the original copper needle. In summary, this work provides a simple and novel method to fabricate bionic copper needles for the directional self-transportation of water droplets in air-phase and oil-phase environments as well as efficient fog collection. It shows great application potential in the fields of microfluidics, desalination, and freshwater collection.
Collapse
Affiliation(s)
- Yangkai Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqiao Peng
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Moulton DE, Oliveri H, Goriely A, Thorogood CJ. Mechanics reveals the role of peristome geometry in prey capture in carnivorous pitcher plants ( Nepenthes). Proc Natl Acad Sci U S A 2023; 120:e2306268120. [PMID: 37676908 PMCID: PMC10515166 DOI: 10.1073/pnas.2306268120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Carnivorous pitcher plants (Nepenthes) are a striking example of a natural pitfall trap. The trap's slippery rim, or peristome, plays a critical role in insect capture via an aquaplaning mechanism that is well documented. While the peristome has received significant research attention, the conspicuous variation in peristome geometry across the genus remains unexplored. We examined the mechanics of prey capture using Nepenthes pitcher plants with divergent peristome geometries. Inspired by living material, we developed a mathematical model that links the peristomes' three-dimensional geometries to the physics of prey capture under the laws of Newtonian mechanics. Linking form and function enables us to test hypotheses related to the function of features such as shape and ornamentation, orientation in a gravitational field, and the presence of "teeth," while analysis of the energetic costs and gains of a given geometry provides a means of inferring potential evolutionary pathways. In a separate modeling approach, we show how prey size may correlate with peristome dimensions for optimal capture. Our modeling framework provides a physical platform to understand how divergence in peristome morphology may have evolved in the genus Nepenthes in response to shifts in prey diversity, availability, and size.
Collapse
Affiliation(s)
- Derek E. Moulton
- Mathematical Institute, University of Oxford, OxfordOX2 6GG, United Kingdom
| | - Hadrien Oliveri
- Mathematical Institute, University of Oxford, OxfordOX2 6GG, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, OxfordOX2 6GG, United Kingdom
| | | |
Collapse
|
7
|
Pulugu P, Arya N, Kumar P, Srivastava A. Polystyrene-Based Slippery Surfaces Enable the Generation and Easy Retrieval of Tumor Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:5582-5594. [PMID: 36445173 DOI: 10.1021/acsabm.2c00620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular tumor spheroids are the most well-characterized organotypic models for cancer research. Generally, scaffold-based and scaffold-free techniques are widely used for culturing spheroids. In scaffold-free techniques, the hanging drop (HD) method is a more versatile technique, but the retrieval of three-dimensional (3D) cell spheroids in the hanging drop method is usually labor-intensive. We developed oil-coated polystyrene nanofiber-based reusable slippery surfaces for the generation and easy retrieval of 3D spheroids. The developed slippery surfaces facilitated the rolling and gliding of the cell medium drops as well as holding the hydrophilic drops for more than 72 h by the virtue of surface tension as in the hanging drop method. In this study, polystyrene nanofibers were developed by the facile technique of electrospinning and the morphological evaluation was performed by scanning electron microscopy (SEM) and cryo-FESEM. We modeled the retrieval process of 3D spheroids with the ingredients of 3D spheroid generation, such as water, cell culture media, collagen, and hyaluronic acid solution, demonstrating the faster and easy retrieval of 3D spheroids within a few seconds. We created MCF-7 spheroids as a proof of concept with a developed slippery surface. 3D spheroids were characterized for their size, homogeneity, reactive oxygen species, proliferative marker (Ki-67), and hypoxic inducing factor 1ά (HIF-1ά). These 3D tumor spheroids were further tested for evaluating the cellular toxicity of the doxorubicin drug. Hence, the proposed slippery surfaces demonstrated the potential alternative of culturing 3D tumor spheroids with an easy retrieval process with intact 3D spheroids.
Collapse
Affiliation(s)
- Priyanka Pulugu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neha Arya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Prasoon Kumar
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
8
|
Liu M, Li C, Peng Z, Chen S, Zhang B. Simple but Efficient Method To Transport Droplets on Arbitrarily Controllable Paths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3917-3924. [PMID: 35297634 DOI: 10.1021/acs.langmuir.2c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The flexible manipulation of droplets manifests a wide spectrum of applications, such as micro-flow control, drug-targeted therapy, and microelectromechanical system heat dissipation. How to realize the efficient control of droplets has become a problem of concern. In this paper, a simple method that can realize the transport of droplets along any controllable path is proposed. It not only has a simple preparation process and clear transport mechanism but is also easy to realize in manipulation technology. A magnetic-sensitive surface is prepared by filling a polymer matrix with magnetic particles and immersing in a lubricant. Under the action of an external magnetic field, rough microstructures are generated locally on the surface, forming the wettability gradient with the area far away from the field. Moving the magnetic field, the wettability gradient region moves accordingly and drives droplets to transport. To better control the transport path of droplets or realize a more complex path design, a ring-shaped magnetic field is further adopted, during which the droplet is automatically located in the ring-shaped region and moves with the movement of the ring-shaped magnetic field. The present technique is simple and easy to implement, which should be helpful in the field of precise regulation of the droplet position.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chenghao Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhilong Peng
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shaohua Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Bo Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Lv F, Zhao F, Cheng D, Dong Z, Jia H, Xiao X, Orejon D. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Adv Colloid Interface Sci 2022; 299:102564. [PMID: 34861513 DOI: 10.1016/j.cis.2021.102564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023]
Abstract
Bioinspired smart functional surfaces have received increasing attention in recent years owed to their tunable wettability and enhanced droplet transport suggesting them as excellent candidates for industrial and nanotechnology-related applications. More specifically, bioinspired slippery lubricant infused porous surfaces (SLIPSs) have been proposed for their low adhesion enabling continuous dropwise condensation (DWC) even of low-surface tension fluids. In addition, functional surfaces with chemical and/or structural wettability gradients have also been exploited empowering spontaneous droplet transport in a controlled manner. Current research has focused on the better understanding of the mechanisms and intimate interactions taking place between liquid droplets and functional surfaces or on the forces imposed by differences in surface wettability and/or by Laplace pressure owed to chemical or structural gradients. Nonetheless, less attention has been paid to the synergistic cooperation of efficiently driving droplet transport via chemical and/or structural patterns/gradients on a low surface energy/adhesion background imposed by SLIPSs, with the consequent promising potential for microfluidics and condensation heat transfer applications amongst others. This review provides a detailed and timely overview and summary on recent advances and developments on bioinspired SLIPSs and on wettability gradient surfaces with focus on their synergistic cooperation for condensation and fluid transport related applications. Firstly, the fundamental theory and mechanisms governing complex droplet transport on homogeneous, on wettability gradient surfaces and on inclined SLIPSs are introduced. Secondly, recent advances on the fabrication and characterization of SLIPSs and functional surfaces are presented. Then, the condensation performance on such functional surfaces comprising chemical or structural wettability gradients is reviewed and their applications on condensation heat transfer are summarized. Last a summary outlook highlighting the opportunities and challenges on the synergistic cooperation of SLIPSs and wettability gradient surfaces for heat transfer as well as future perspective in modern applications are presented.
Collapse
|
10
|
Bandyopadhyay S, Santra S, Das SS, Mukherjee R, Chakraborty S. Non-wetting Liquid-Infused Slippery Paper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13627-13636. [PMID: 34752110 DOI: 10.1021/acs.langmuir.1c02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-infused slippery surfaces have replaced structural superhydrophobic surfaces in a plethora of emerging applications, hallmarked by their favorable self-healing and liquid-repelling characteristics. Their ease of fabrication on different types of materials and increasing demand in various industrial applications have triggered research interests targeted toward developing an environmental-friendly, flexible, and frugal substrate as the underlying structural and functional backbone. Although many expensive polymers such as polytetrafluoroethylene have so far been used for their fabrication, these are constrained by their compromised flexibility and non-ecofriendliness due to the use of fluorine. Here, we explore the development and deployment of a biodegradable, recyclable, flexible, and an economically viable material in the form of a paper matrix for fabricating liquid-infused slippery interfaces for prolonged usage. We show by controlled experiments that a simple silanization followed by an oil infusion protocol imparts an inherent slipperiness (low contact angle hysteresis and low tilting angle for sliding) to the droplet motion on the paper substrate and provides favorable anti-icing characteristics, albeit keeping the paper microstructures unaltered. This ensures concomitant hydrophobicity, water adhesion, and capillarity for low surface tension fluids, such as mustard oil, with an implicit role played by the paper pore size distribution toward retaining a stable layer of the infused oil. With demonstrated supreme anti-icing characteristics, these results open up new possibilities of realizing high-throughput paper-based substrates for a wide variety of applications ranging from biomedical unit operations to droplet-based digital microfluidics.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Somnath Santra
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sankha Shuvra Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rabibrata Mukherjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
11
|
Labonte D, Robinson A, Bauer U, Federle W. Disentangling the role of surface topography and intrinsic wettability in the prey capture mechanism of Nepenthes pitcher plants. Acta Biomater 2021; 119:225-233. [PMID: 33189952 DOI: 10.1016/j.actbio.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022]
Abstract
Nepenthes pitcher plants capture prey with leaves specialised as pitfall traps. Insects are trapped when they 'aquaplane' on the pitcher rim (peristome), a surface structured with macroscopic and microscopic radial ridges. What is the functional significance of this hierarchical surface topography? Here, we use insect pad friction measurements, photolithography, wetting experiments and physical modelling to demonstrate that the ridges enhance the trap's efficacy by satisfying two functional demands on prey capture: Macroscopic ridges restrict lateral but enhance radial spreading of water, thereby creating continuous slippery tracks which facilitate prey capture when little water is present. Microscopic ridges, in turn, ensure that the water film between insect pad and peristome remains stable, causing insects to aquaplane. In combination, the hierarchical ridge structure hence renders the peristome wettable, and water films continuous, so avoiding the need for a strongly hydrophilic surface chemistry, which would compromise resistance to desiccation and attract detrimental contamination.
Collapse
|
12
|
Soltani M, Golovin K. Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Adv 2020; 10:40569-40581. [PMID: 35520851 PMCID: PMC9057580 DOI: 10.1039/d0ra08627d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022] Open
Abstract
Inspired by natural surfaces such as butterfly wings, cactus leaves, or the Nepenthes alata plant, synthetic materials may be engineered to directionally transport liquids on their surface without external energy input. This advantageous feature has been adopted for various mechanical and chemical processes, e.g. fog harvesting, lubrication, lossless chemical reactions, etc. Many studies have focused on the manipulation and transport of water or aqueous droplets, but significantly fewer have extended their work to low surface tension (LST) liquids, although these fluids are involved in numerous industrial and everyday processes. LST liquids completely wet most surfaces which makes spontaneous transportation an active challenge. This review focuses on recently developed strategies for passively and directionally transporting LST liquids.
Collapse
Affiliation(s)
- Mohammad Soltani
- Okanagan Polymer Engineering Research & Applications Laboratory, Faculty of Applied Science, University of British Columbia Canada
| | - Kevin Golovin
- Okanagan Polymer Engineering Research & Applications Laboratory, Faculty of Applied Science, University of British Columbia Canada
| |
Collapse
|
13
|
Abstract
Our existence depends on plants, yet to many they are invisible, a phenomenon called 'plant blindness'. Addressing this is crucial in the face of unprecedented biodiversity loss and extinction. Digital engagement with astonishing plants can break the perception that they are uninteresting and take us steps forward in addressing disengagement.
Collapse
Affiliation(s)
- Chris Thorogood
- Department of Plant Sciences, Oxford University Botanic Garden, Oxford, UK.
| |
Collapse
|
14
|
Smart Materials. Biomimetics (Basel) 2020. [DOI: 10.1002/9781119683360.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Liu M, Peng Z, Yao Y, Yang Y, Chen S. Flexible Functional Surface for Efficient Water Collection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12256-12263. [PMID: 32069011 DOI: 10.1021/acsami.9b20222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by both the water collection strategy of desert beetles and the lubrication effect of Nepenthes pitcher plants, a new flexible functional surface for water collection is designed and can be easily fabricated. Such a functional surface consists mainly of a superhydrophobic region and a hydrophobic region with infused lubricating oil. Different functional patterns can be easily manipulated by different templates. Due to the flexibility of the surface, not only a two-dimensional surface but also a three-dimensional one can be designed. Directional water collection can be achieved. Furthermore, it is an integrative bioinspired functional surface that does not require any tailoring. Compared with existing functional surfaces, the present surface has higher water collection efficiency in fog and such a function can last 15 days. The functional degraded surfaces can also be easily reused.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Zhilong Peng
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Yin Yao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Yazheng Yang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Shaohua Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|