1
|
Tang S, Zhang J, Ma P, Zhang Z. Effect of ultraviolet treatment on soft tissue healing and bacterial attachment to titania-coated zirconia. Biomed Mater 2024; 20:015003. [PMID: 39419114 DOI: 10.1088/1748-605x/ad8827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Zirconia is the most promising implant abutment material due to its excellent aesthetic effect, good biocompatibility and corrosion resistance. To obtain ideal soft tissue sealing, the implant abutment surface should facilitate cell adhesion and inhibit bacterial colonization. In this study, pre-sintered zirconia was placed in a suspension of titania (TiO2) and zirconium oxychloride (ZrOCl2) and heated in a water bath for dense sintering. A titania coating was prepared on the zirconia surface and subjected to UV irradiation. The surface morphology, elemental composition and chemical state of each group of samples were analyzed by scanning electron microscope, x-ray energy spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction. The responses of human gingival fibroblasts (HGFs) and common oral pathogensStreptococcus mutans(S. mutans) andPorphyromonas gingivalis(P. gingivalis) to modified zirconia were systematically assessed. Our findings demonstrated that the surface of titania-coated zirconia after UV irradiation produced a large number of hydroxyl groups, and its hydrophilicity was significantly improved. Meanwhile, the UV irradiation also greatly removed the hydrocarbon contaminants on the surface of the titania-coated zirconia. The UV-treated titania coating significantly promoted the proliferation, spreading, and up-regulation of adhesion-related genes and proteins of HGFs. Furthermore, the titania coating irradiated with UV could reduce the adhesion, colonization and metabolic activity ofS. mutansandP. gingivalis. Therefore, UV irradiation of titania-coated zirconia can promote the biological behavior of HGFs and exert a significant antibacterial effect, which has broad clinical application prospects for improving soft tissue integration around zirconia abutments.
Collapse
Affiliation(s)
- Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jiebing Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ping Ma
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
2
|
Turner AB, Giraldo-Osorno PM, Douest Y, Morales-Laverde LA, Bokinge CA, Asa'ad F, Courtois N, Palmquist A, Trobos M. Race for the surface between THP-1 macrophages and Staphylococcus aureus on various titanium implants with well-defined topography and wettability. Acta Biomater 2024:S1742-7061(24)00666-4. [PMID: 39528060 DOI: 10.1016/j.actbio.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Gristina et al. (1987) suggested the fate of a biomaterial is decided in a "race for the surface" between pathogens and the host. To gain deeper insight into the mechanisms behind this concept, we investigated the "race for the surface" across three co-culture scenarios with THP-1 macrophages and Staphylococcus aureus (1:1 ratio), varying the order of addition: (i) simultaneous, (ii) macrophages first, and (iii) S. aureus first, on six Ti6Al4V-ELI surfaces modified with specific topographies and wettability. The outcome of the race for the surface was not influenced by these biomaterials but by the chronological introduction of macrophages and S. aureus. When macrophages and S. aureus arrived simultaneously, macrophages won the race, leading to the lowest number of viable S. aureus through rapid phagocytosis and killing. When macrophages arrived and established first, macrophages still prevailed but under greater challenge resulting from the lower bacterial killing efficiency of adherent macrophages and numerous viable intracellular bacteria, supporting the concept of the so-called immunocompromised zone around implants (upregulation of TLR-2 receptor and pro-inflammatory IL-1β). When S. aureus arrived first establishing a biofilm, bacteria won the race, leading to macrophage dysfunction and cell death (upregulation of FcγR and TLR-2 receptors, NF-κB signaling, NOX2 mediated reactive oxygen species), contributing to a persistent biofilm phenotype (upregulation of clfA, icaA, sarA, downregulation of agrA, hld, lukAB) and intracellular survival of S. aureus (lipA upregulation). The clinical implications are bacterial colonization of the implant and persistence of intracellular bacteria in periprosthetic tissues, which can lead to infection chronicity. STATEMENT OF SIGNIFICANCE: Gristina et al. (1987) suggested the fate of a biomaterial is decided in a "race for the surface" between bacterial pathogens and host cells. There is a lack of in vitro co-culture models and knowledge on macrophage-S. aureus interactions on biomaterial surfaces, and none has evaluated the expression of virulence factors in S. aureus biofilms. We have successfully developed co-culture models and molecular panels and elucidated important cellular and molecular interactions between macrophages and S. aureus on a broad range of titanium biomaterials with well-defined surface topography and wettability. Our findings highlight the critical role of biofilm formation and the chronological order of bacteria or macrophage arrival in determining the fate of the surface.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Yohan Douest
- INSA-Lyon, Université de Lyon, UMR CNRS 5510 MATEIS, 20 Avenue Albert Einstein, 69621 Villeurbanne CEDEX, France;; Anthogyr SAS, 2237 Avenue André Lasquin, 74700 Sallanches, France
| | - Liliana Andrea Morales-Laverde
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Carl Anton Bokinge
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Nicolas Courtois
- Anthogyr SAS, 2237 Avenue André Lasquin, 74700 Sallanches, France
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;.
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;; Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden;.
| |
Collapse
|
3
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2024. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
4
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Kunrath MF, Hubler R, Dahlin C. Adverse effects of sterilization processes on the fundamental topographic properties of modified dental implant surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:44. [PMID: 39073722 PMCID: PMC11286709 DOI: 10.1007/s10856-024-06813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
The employ of sterilization processes are essential to investigate biomaterials aiming for experimental, preclinical, or clinical applications with biological tissues. However, responsive surface properties of biomaterials may be susceptible to sterilization processes, compromising important physio-chemical characteristics. For that reason, this in vitro study aimed to investigate the effects of three different processes for sterilization (humid heat under pressure, UVC-light exposure, and Gamma irradiation) on the major topographical properties of implant surfaces applied to dental bone-anchored implants and/or implant-abutments. Three groups of implant surfaces were developed: a smooth machined surface, a micro-texturized surface, and a hydrophilic micro-texturized surface. The implants were sterilized with three methodologies and characterized regarding surface morphology, elemental surface composition, roughness parameters, wettability characteristics, and compared to the samples as-developed. Surface morphology and roughness parameters were not modified by any of the sterilization processes applied. On the other hand, hydrophilic implants were negatively affected by autoclaving. After package opening, hydrophilic features showed to be sensible to atmospheric air exposition independently of the sterilization process performed. Our findings revealed significant chemical changes on the implant surfaces caused by autoclaving and UVC exposure; additionally, the results showed the importance of selecting an appropriate sterilization method when investigating hydrophilic implants so as not to generate imprecise outcomes.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden.
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
6
|
Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. TiO 2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Dent Mater 2024; 40:907-920. [PMID: 38714394 DOI: 10.1016/j.dental.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVES Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO2 nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface. SOURCES For that purpose, was performed a systematic search on the bases PubMed, Lilacs, Embase, Web Of Science, Cinahl, and Cochrane Central, as well as, manual searches and gray literature. STUDY SELECTION The searches resulted in 742 articles, of which 156 followed for full-text reading. Then, 37 were included in the systematic review and 8 were included in meta-analysis. RESULTS Fifteen studies revealed significant antibacterial protection using TiO2 nanotube surfaces, while 15 studies found no statistical difference between control and nanotextured surfaces. Meta-analysis of in vitro studies demonstrated relevant bacterial reduction only for studies investigating Staphylococcus aureus in a period of 6 h. Meta-analysis of in vivo studies revealed three times lower bacterial adhesion and proliferation on TiO2 nanotube surfaces. CONCLUSIONS TiO2 nanotube topography as a surface for dental implants in preclinical research has demonstrated a positive relationship with antibacterial properties, nevertheless, factors such as anodization protocols, bacteria strains, and mono-culture methods should be taken into consideration, consequently, further studies are necessary to promote clinical translatability.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Georgia Farina
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza B S Sturmer
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Zhan J, Li L, Yao L, Cao Z, Lou W, Zhang J, Liu J, Yao L. Evaluation of sustained drug release performance and osteoinduction of magnetron-sputtered tantalum-coated titanium dioxide nanotubes. RSC Adv 2024; 14:3698-3711. [PMID: 38268551 PMCID: PMC10805130 DOI: 10.1039/d3ra08769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Modifying the drug-release capacity of titanium implants is essential for maintaining their long-term functioning. Titanium dioxide nanotube (TNT) arrays, owing to their drug release capacity, are commonly used in the biomaterial sphere. Their unique half open structure and arrangement in rows increase the drug release capacity. However, their rapid drug release ability not only reduces drug efficiency but also produces excessive local and systemic deposition of antibiotics. In this study, we designed a tantalum-coated TNT system for drug-release optimization. A decreased nanotube size caused by the tantalum nanocoating was observed through SEM and analyzed (TNT: 110 nm, TNT-Ta1: 80 nm, TNT-Ta3: 40 nm, TNT-Ta5: 20 nm, TNT-Ta7: <5 nm). XPS analysis revealed the distribution of the chemical components, especially that of the tantalum element. In vitro experiments showed that the tantalum nanocoating enhanced cell proliferation; in particular, TNT-Ta5 possessed the best cell viability (about 1.18 of TNT groups at 7d). It also showed that the tantalum nanocoating had a positive effect on osteogenesis (especially TNT-Ta5 and TNT-Ta7). Additionally, hydrophilic/hydrophobic drug (vancomycin/raloxifene) release results indicated that the TNT-Ta5 group possessed the most desirable sustained release capacity. Moreover, in this drug release system, the hydrophobic drug showed more sustained release capacity than the hydrophilic drug (vancomycin: sustained release for more than 48 h, raloxifene: sustained release for more than 168 h). More importantly, TNT-Ta5 is proved to be an appropriate drug release system, which possesses cytocompatibility, osteogenic capacity, and sustained drug release capacity.
Collapse
Affiliation(s)
- Jing Zhan
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Li Li
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University 268# Xueyuan West Road, Lucheng District Wenzhou Zhejiang China
| | - Zheng Cao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| | - Weiwei Lou
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Jianying Zhang
- International Healthcare Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310058 China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University 268# Xueyuan West Road, Lucheng District Wenzhou Zhejiang China
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University 3# Qingchun East Road, Shangcheng District Hangzhou 310058 Zhejiang China
| |
Collapse
|
8
|
Zhang WS, Liu Y, Shao SY, Shu CQ, Zhou YH, Zhang SM, Qiu J. Surface characteristics and in vitro biocompatibility of titanium preserved in a vitamin C-containing saline storage solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:3. [PMID: 38206387 PMCID: PMC10784388 DOI: 10.1007/s10856-023-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to explore a storage solution for titanium implants and investigate its osteogenic properties. The commercial pure titanium (cp-Ti) surface and double-etched (SLA) titanium surface specimens were preserved in air, saline, 10 mM Vitamin C (VitC)-containing saline and 100 mM VitC-containing saline storage solutions for 2 weeks. The surface microtopography of titanium was observed by scanning electron microscopy (SEM), the surface elemental compositions of the specimens were analyzed by Raman and X-ray photoelectron spectroscopy (XPS), and water contact angle and surface roughness of the specimens were tested. The protein adsorption capacity of two titanium surfaces after storage in different media was examined by BCA kit. The MC3T3-E1 osteoblasts were cultured on two titanium surfaces after storage in different media, and the proliferation, adhesion and osteogenic differentiation activity of osteoblasts were detected by CCK-8, laser confocal microscope (CLSM) and Western blot. The SEM results indicated that the titanium surfaces of the air group were relatively clean while scattered sodium chloride or VitC crystals were seen on the titanium surfaces of the other three groups. There were no significant differences in the micromorphology of the titanium surfaces among the four groups. Raman spectroscopy detected VitC crystals on the titanium surfaces of two experimental groups. The XPS, water contact angle and surface roughness results suggested that cp-Ti and SLA-Ti stored in 0.9% NaCl and two VitC-containing saline storage solutions possessed less carbon contamination and higher surface hydrophilicity. Moreover, the protein adsorption potentials of cp-Ti and SLA-Ti surfaces were significantly improved under preservation in two VitC-containing saline storage solutions. The results of in vitro study showed that the preservation of two titanium surfaces in 100 mM VitC-containing saline storage solution upregulated the cell adhesion, proliferation, osteogenic related protein expressions of MC3T3-E1 osteoblasts. In conclusion, preservation of cp-Ti and SLA-Ti in 100 mM VitC-containing saline storage solution could effectively reduce carbon contamination and enhance surface hydrophilicity, which was conducive to osteogenic differentiation of osteoblasts.
Collapse
Affiliation(s)
- Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Chang-Qing Shu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Boston, MA, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China.
| |
Collapse
|
9
|
Rawat N, Benčina M, Paul D, Kovač J, Lakota K, Žigon P, Kralj-Iglič V, Ho HC, Vukomanović M, Iglič A, Junkar I. Fine-Tuning the Nanostructured Titanium Oxide Surface for Selective Biological Response. ACS APPLIED BIO MATERIALS 2023; 6:5481-5492. [PMID: 38062750 PMCID: PMC10731649 DOI: 10.1021/acsabm.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cardiovascular diseases are a pre-eminent global cause of mortality in the modern world. Typically, surgical intervention with implantable medical devices such as cardiovascular stents is deployed to reinstate unobstructed blood flow. Unfortunately, existing stent materials frequently induce restenosis and thrombosis, necessitating the development of superior biomaterials. These biomaterials should inhibit platelet adhesion (mitigating stent-induced thrombosis) and smooth muscle cell proliferation (minimizing restenosis) while enhancing endothelial cell proliferation at the same time. To optimize the surface properties of Ti6Al4V medical implants, we investigated two surface treatment procedures: gaseous plasma treatment and hydrothermal treatment. We analyzed these modified surfaces through scanning electron microscopy (SEM), water contact angle analysis (WCA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Additionally, we assessed in vitro biological responses, including platelet adhesion and activation, as well as endothelial and smooth muscle cell proliferation. Herein, we report the influence of pre/post oxygen plasma treatment on titanium oxide layer formation via a hydrothermal technique. Our results indicate that alterations in the titanium oxide layer and surface nanotopography significantly influence cell interactions. This work offers promising insights into designing multifunctional biomaterial surfaces that selectively promote specific cell types' proliferation─which is a crucial advancement in next-generation vascular implants.
Collapse
Affiliation(s)
- Niharika Rawat
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Metka Benčina
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Domen Paul
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova 62, SI-1000 Ljubljana, Slovenia
| | - Polona Žigon
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova 62, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory
of Clinical Biophysics, Faculty of Health
Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Hsin-Chia Ho
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Marija Vukomanović
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
- Chair of
Orthopaedic Surgery, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ita Junkar
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Kunrath MF, Gerhardt MDN. Trans-mucosal platforms for dental implants: Strategies to induce muco-integration and shield peri-implant diseases. Dent Mater 2023; 39:846-859. [PMID: 37537095 DOI: 10.1016/j.dental.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Trans-mucosal platforms connecting the bone-anchored implants to the prosthetic teeth are essential for the success of oral rehabilitation in implant dentistry. This region promotes a challenging environment for the successfulness of dental components due to the transitional characteristics between soft and hard tissues, the presence of bacteria, and mechanical forces. This review explored the most current approaches to modify trans-mucosal components in terms of macro-design and surface properties. METHODS This critical review article revised intensely the literature until July 2023 to demonstrate, discuss, and summarize the current knowledge about marketable and innovative trans-mucosal components for dental implants. RESULTS A large number of dental implant brands have promoted the development of several implant-abutment designs in the clinical market. The progress of abutment designs shows an optimistic reduction of bacteria colonization underlying the implant-abutment gap, although, not completely inhibited. Fundamental and preclinical studies have demonstrated promising outcomes for altered-surface properties targeting antibacterial properties and soft tissue sealing. Nanotopographies, biomimetic coatings, and antibiotic-release properties have been shown to be able to modulate, align, orient soft tissue cells, and induce a reduction in biofilm formation, suggesting superior abilities compared to the current trans-mucosal platforms available on the market. SIGNIFICANCE Future clinical implant-abutments show the possibility to reduce peri-implant diseases and fortify soft tissue interaction with the implant-substrate, defending the implant system from bacteria invasion. However, the absence of technologies translated to commercial stages reveals the need for findings to "bridge the gap" between scientific evidences published and applied science in the industry.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Maurício do N Gerhardt
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Kunrath MF, Rubensam G, Rodrigues FVF, Marinowic DR, Sesterheim P, de Oliveira SD, Teixeira ER, Hubler R. Nano-scaled surfaces and sustainable-antibiotic-release from polymeric coating for application on intra-osseous implants and trans-mucosal abutments. Colloids Surf B Biointerfaces 2023; 228:113417. [PMID: 37356139 DOI: 10.1016/j.colsurfb.2023.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gabriel Rubensam
- Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel R Marinowic
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Experimental Cardiology Center, Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia D de Oliveira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Mater Today Bio 2023; 18:100540. [PMID: 36632628 PMCID: PMC9826856 DOI: 10.1016/j.mtbio.2022.100540] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology and drug-release biomaterials have been thoroughly explored in the last few years aiming to develop specialized clinical treatments. However, it is rare to find biomaterials associated with drug delivery properties in the current dental market for application in oral bone- and periodontal-related procedures. The gap between basic scientific evidence and translation to a commercial product remains wide. Several challenges have been reported regarding the clinical translation of biomaterials with drug-delivery systems (BDDS) and nanofeatures. Therefore, processes for BDDS development, application in preclinical models, drug delivery doses, sterilization processes, storage protocols and approval requirements were explored in this review, associated with tentative solutions for these issues. The diversity of techniques and compounds/molecules applied to develop BDDS demands a case-by-case approach to manufacturing and validating a commercial biomaterial. Promising outcomes such as accelerated tissue healing and higher antibacterial response have been shown through basic and preclinical studies using BDDS and nano-engineered biomaterials; however, the adequate process for sterilization, storage, cost-effectiveness and possible cytotoxic effects remains unclear for multifunctional biomaterials incorporated with different chemical compounds; then BDDSs are rarely translated into products. The future benefits of BDDS and nano-engineered biomaterials have been reported suggesting personalized clinical treatment and a promising reduction in the use of systemic antibiotics. Finally, the launch of these specialized biomaterials with solid data and controlled traceability onto the market will generate strong specificity for healthcare treatments.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Furqan A. Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
13
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
14
|
Liao B, Wang Z, Li W. Discussion of bonding strength of chitosan-tannic acid coating and its anti-osteoclast and anti-microbial mechanism. J Bone Miner Metab 2022; 40:869-871. [PMID: 35690968 DOI: 10.1007/s00774-022-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Liao
- Key Laboratory for Advanced Technology of Materials of Ministry of Education, Tribology Research Institute, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhenglun Wang
- Key Laboratory for Advanced Technology of Materials of Ministry of Education, Tribology Research Institute, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Li
- Key Laboratory for Advanced Technology of Materials of Ministry of Education, Tribology Research Institute, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
15
|
Kunrath MF, Correia A, Teixeira ER, Hubler R, Dahlin C. Superhydrophilic Nanotextured Surfaces for Dental Implants: Influence of Early Saliva Contamination and Wet Storage. NANOMATERIALS 2022; 12:nano12152603. [PMID: 35957034 PMCID: PMC9370139 DOI: 10.3390/nano12152603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Hydrophilic and nanotextured surfaces for dental implants have been reported as relevant properties for early osseointegration. However, these surface characteristics are quite sensitive to oral interactions. Therefore, this pilot study aimed to investigate the superficial alterations caused on hydrophilic nanotubular surfaces after early human saliva interaction. Titanium disks were treated using an anodization protocol followed by reactive plasma application in order to achieve nanotopography and hydrophilicity, additionally; surfaces were stored in normal atmospheric oxygen or wet conditioning. Following, samples were interacted with saliva for 10 min and analyzed regarding physical–chemical properties and cellular viability. Saliva interaction did not show any significant influence on morphological characteristics, roughness measurements and chemical composition; however, hydrophilicity was statistically altered compromising this feature when the samples were stored in common air. Cellular viability tested with pre-osteoblasts cell line (MC3T3-E1) reduced significantly at 48 h on the samples without wet storage after saliva contamination. The applied wet-storage methodology appears to be effective in maintaining properties such as hydrophilicity during saliva interaction. In conclusion, saliva contamination might impair important properties of hydrophilic nanotubular surfaces when not stored in wet conditions, suggesting the need of saliva-controlled sites for oral application of hydrophilic surfaces and/or the use of modified-package methods associated with their wet storage.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| | - André Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health, 3504-505 Viseu, Portugal;
| | - Eduardo R. Teixeira
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| |
Collapse
|
16
|
Xue K, Zhang S, Ge J, Wang Q, Qi L, Liu K. Integration of Bioglass Into PHBV-Constructed Tissue-Engineered Cartilages to Improve Chondrogenic Properties of Cartilage Progenitor Cells. Front Bioeng Biotechnol 2022; 10:868719. [PMID: 35685093 PMCID: PMC9172278 DOI: 10.3389/fbioe.2022.868719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffold has proven to be a promising three-dimensional (3D) biodegradable and bioactive scaffold for the growth and proliferation of cartilage progenitor cells (CPCs). The addition of Bioglass into PHBV was reported to increase the bioactivity and mechanical properties of the bioactive materials.Methods: In the current study, the influence of the addition of Bioglass into PHBV 3D porous scaffolds on the characteristics of CPC-based tissue-engineered cartilages in vivo were compared. CPCs were seeded into 3D macroporous PHBV scaffolds and PHBV/10% Bioglass scaffolds. The CPC–scaffold constructs underwent 6 weeks in vitro chondrogenic induction culture and were then transplanted in vivo for another 6 weeks to evaluate the difference between the CPC–PHBV construct and CPC–PHBV/10% Bioglass construct in vivo.Results: Compared with the pure PHBV scaffold, the PHBV/10% Bioglass scaffold has better hydrophilicity and a higher percentage of adhered cells. The CPC–PHBV/10%Bioglass construct produced much more cartilage-like tissues with higher cartilage-relative gene expression and cartilage matrix protein production and better biomechanical performance than the CPC–PHBV construct.Conclusion: The addition of Bioglass into 3D PHBV macroporous scaffolds improves the characteristics of CPC-based tissue-engineered cartilages in vivo.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Hainan, China
| | - Shuqi Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Ge
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Lin Qi, ; Kai Liu,
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lin Qi, ; Kai Liu,
| |
Collapse
|
17
|
Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents. Int J Mol Sci 2022; 23:ijms23094595. [PMID: 35562988 PMCID: PMC9099593 DOI: 10.3390/ijms23094595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Nanoporous ceramic coatings such as titania are promoted to produce drug-free cardiovascular stents with a low risk of in-stent restenosis (ISR) because of their selectivity towards vascular cell proliferation. The brittle coatings applied on stents are prone to cracking because they are subjected to plastic deformation during implantation. This study aims to overcome this problem by using a unique process without refraining from biocompatibility. Accordingly, a titanium film with 1 µm thickness was deposited on 316 LVM stainless-steel sheets using magnetron sputtering. Then, the samples were anodized to produce nanoporous oxide. The nanoporous oxide was removed by ultrasonication, leaving an approximately 500 nm metallic titanium layer with a nanopatterned surface. XPS studies revealed the presence of a 5 nm-thick TiO2 surface layer with a trace amount of fluorinated titanium on nanopatterned surfaces. Oxygen plasma treatment of the nanopatterned surface produced an additional 5 nm-thick fluoride-free oxide layer. The samples did not exhibit any cracking or spallation during plastic deformation. Cell viability studies showed that nanopatterned surfaces stimulate endothelial cell proliferation while reducing the proliferation of smooth muscle cells. Plasma treatment further accelerated the proliferation of endothelial cells. Activation of blood platelets did not occur on oxygen plasma-treated, fluoride-free nanopatterned surfaces. The presented surface treatment method can also be applied to other stent materials such as CoCr, nitinol, and orthopedic implants.
Collapse
|
18
|
Rahnamaee SY, Ahmadi Seyedkhani S, Eslami Saed A, Sadrnezhaad SK, Seza A. Bioinspired TiO2/Chitosan/HA Coatings on Ti Surfaces: Biomedical Improvement by Intermediate Hierarchical Films. Biomed Mater 2022; 17. [PMID: 35349998 DOI: 10.1088/1748-605x/ac61fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, to fix the first problem, different bioinspired coatings were applied to the titanium alloy surfaces in this study, including dual acid-etched, anodic TiO2 nanotubes array (TNTs), anodic hierarchical titanium oxide, micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite coating. XRD and FTIR analysis demonstrated that the in situ HA/chitosan nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120-150% after 10 days. The hierarchical coating demonstrated superhydrophilicity (θ ≈ 0°) and increased the wettability of the metallic Ti surface by more than 120%. The friction coefficient of all fabricated surfaces was within the range of natural bone's mechanical behavior. The intermediate hierarchical oxide layer increased the adhesion strength of the HA/chitosan coating by more than 60%. The Hierarchical middle oxide layer caused the mechanical stability of HA/CS during the 1000 m of friction test. The microhardness of HA/CS (22.5 HV) and micro-HA (25.5 HV) coatings was comparable to that of human bone. An intermediate hierarchical oxide-based mechanism for improving adhesion strength in HA/CS coatings was presented.
Collapse
Affiliation(s)
- Seyed Yahya Rahnamaee
- Sharif University of Technology, Department of Materials Science and Engineering , Sharif University of Technology , Azadi Ave , Tehran , Iran, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Shahab Ahmadi Seyedkhani
- Materials Science and Engineering, Sharif University of Technology, Department of Materials Science and Engineering , Sharif University of Technology , Azadi Ave , Tehran , Iran, Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology , Azadi Ave , Tehran , Iran, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Aylar Eslami Saed
- Sharif University of Technology, Azadi Ave., Sharif University of Technology, Tehran, Tehran, 11365-9466, Iran (the Islamic Republic of)
| | - S K Sadrnezhaad
- Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Ashkan Seza
- Sharif University of Technology, Azadi Ave., Sharif University of Technology, Tehran, Tehran, 11365-9466, Iran (the Islamic Republic of)
| |
Collapse
|
19
|
Kunrath MF, Dahlin C. The Impact of Early Saliva Interaction on Dental Implants and Biomaterials for Oral Regeneration: An Overview. Int J Mol Sci 2022; 23:2024. [PMID: 35216139 PMCID: PMC8875286 DOI: 10.3390/ijms23042024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The presence of saliva in the oral environment is relevant for several essential health processes. However, the noncontrolled early saliva interaction with biomaterials manufactured for oral rehabilitation may generate alterations in the superficial properties causing negative biological outcomes. Therefore, the present review aimed to provide a compilation of all possible physical-chemical-biological changes caused by the early saliva interaction in dental implants and materials for oral regeneration. Dental implants, bone substitutes and membranes in dentistry possess different properties focused on improving the healing process when in contact with oral tissues. The early saliva interaction was shown to impair some positive features present in biomaterials related to quick cellular adhesion and proliferation, such as surface hydrophilicity, cellular viability and antibacterial properties. Moreover, biomaterials that interacted with contaminated saliva containing specific bacteria demonstrated favorable conditions for increased bacterial metabolism. Additionally, the quantity of investigations associating biomaterials with early saliva interaction is still scarce in the current literature and requires clarification to prevent clinical failures. Therefore, clinically, controlling saliva exposure to sites involving the application of biomaterials must be prioritized in order to reduce impairment in important biomaterial properties developed for rapid healing.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
| |
Collapse
|
20
|
A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf 2021; 5:371-395. [PMID: 34721937 PMCID: PMC8546395 DOI: 10.1007/s42242-021-00170-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Abstract Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials. Graphic abstract ![]()
Collapse
|
21
|
Kunrath MF, Muradás TC, Penha N, Campos MM. Innovative surfaces and alloys for dental implants: What about biointerface-safety concerns? Dent Mater 2021; 37:1447-1462. [PMID: 34426019 DOI: 10.1016/j.dental.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The present review article aimed to discuss the recent technologies employed for the development of dental implants, mainly regarding innovative surface treatments and alternative alloys, emphasizing the bio-tribocorrosion processes. METHODS An electronic search applying specific MeSH terms was carried out in PubMed and Google Scholar databases to collect data until August 2021, considering basic, pre-clinical, clinical and review studies. The relevant articles (n=111), focused on innovative surface treatments for dental implants and their potential undesirable biological effects, were selected and explored. RESULTS Novel texturization methodologies for dental implants clearly provided superficial and structural atomic alterations in micro- and nanoscale, promoting different mechanical-chemical interactions when applied in the clinical set. Some particulate metals released from implant surfaces, their degradation products and/or contaminants exhibited local and systemic reactions after implant installation and osseointegration, contributing to unexpected treatment drawbacks and adverse effects. Therefore, there is an urgent need for development of pre-clinical and clinical platforms for screening dental implant devices, to predict the biointerface reactions as early as possible during the development phases. SIGNIFICANCE Modern surface treatments and innovative alloys developed for dental implants are not completely understood regarding their integrity during long-term clinical function, especially when considering the bio-tribocorrosion process. From this review, it is possible to assume that degradation and contamination of dental surfaces might be associated within peri-implant inflammation and cumulative long-lasting systemic toxicity. The in-depth comprehension of the biointerface modifications on these novel surface treatments might preclude unnecessary expenses and postoperative complications involving osseointegration failures.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thaís C Muradás
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Kunrath MF, Hubler R, Silva RM, Barros M, Teixeira ER, Correia A. Influence of saliva interaction on surface properties manufactured for rapid osseointegration in dental implants. BIOFOULING 2021; 37:757-766. [PMID: 34396855 DOI: 10.1080/08927014.2021.1964487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Surface treatments are designed to promote modified implant surfaces with positive interactions with the surrounding living tissues. However, the inadvertent early contact of these surfaces with oral fluids during surgery may lead to undesired conditions affecting osseointegration. This study aimed to investigate the possible alterations in the physico-chemical properties of modified-surfaces caused by early saliva exposure. Titanium (Ti) surfaces were exposed to three different samples of human saliva and later analyzed for protein adhesion, physico-chemical surface alterations, and osteogenic cell-viability. The results indicated that surface roughness was the most significant factor influencing saliva protein adsorption; moreover, hydrophilic surfaces had critically lost their characteristics after contact with saliva. Decreased cell viability was observed in cultures after contact with saliva. Early contact with saliva might negatively influence modified surface properties and local cell viability. Careful surgical insertion of implants with hydrophilic surfaces is recommended, particularly in sites where saliva interaction is prone to occur.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel M Silva
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Marlene Barros
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Eduardo R Teixeira
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Correia
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| |
Collapse
|
23
|
Shirazi-Fard S, Mohammadpour F, Zolghadr AR, Klein A. Encapsulation and Release of Doxorubicin from TiO 2 Nanotubes: Experiment, Density Functional Theory Calculations, and Molecular Dynamics Simulation. J Phys Chem B 2021; 125:5549-5558. [PMID: 34014667 DOI: 10.1021/acs.jpcb.1c02648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium dioxide (TiO2) nanotubes are attractive materials for drug-delivery systems because of their biocompatibility, chemical stability, and simple preparation. In this study, we loaded TiO2 nanotubes with anticancer drug doxorubicin (DOX) experimentally and in all-atom molecular dynamics (MD) simulations. The release of doxorubicin from the nanotubes was studied by high-performance liquid chromatography (HPLC) and confocal Raman spectroscopy, and drug-release profiles were evaluated under various conditions. The polyethylene glycol (PEG) coating and capping of the nanotubes led to a marked increase in the water contact angles from about 16 to 33° in keeping with reduced wettability. The capping retarded the release rate without decreasing the overall release amount. The MD simulations further show that the DOX molecule diffusion coefficients (Di) are in the order of 10-10 m2/s. The DOX molecules show a plethora of short- and long-range H-bonding interactions with TiO2 nanotube walls and water. Calculated radial distribution functions (RDFs) and combined radial/angular distribution functions (CDFs) allowed gauging the strength of these hydrogen bonds. The strength does not fully correlate with the pKa values of DOX atoms which we assign to the confinement of DOX and water in the tubes. The lifetimes of hydrogen bonds between the DOX atoms and water molecules are shorter than that of the DOX...TiO2 interactions, and DOX...DOX aggregation does not play an important role. These results suggest TiO2 nanotubes as promising candidates for controllable drug-delivery systems for DOX or similar antiproliferative molecules.
Collapse
Affiliation(s)
| | - Fatemeh Mohammadpour
- Department of Physics, Farhangian University, Tarbiat Moallem, Ave Niayesh Junction Farahzadi Blvd, Tehran 1939614464, Iran
| | | | - Axel Klein
- Department of Chemistry, Shiraz University, Shiraz 71946-84795, Iran.,Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Köln, Germany
| |
Collapse
|
24
|
Kunrath MF, Campos MM. Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology 2021; 15:721-739. [PMID: 33896331 DOI: 10.1080/17435390.2021.1915401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current focus of bioengineering for implant devices involves the development of functionalized surfaces, bioactive coatings, and metallic nanoparticles (mNPs) with a controlled release, together with strategies for the application of drugs in situ, aiming at reducing infection rates, with an improvement of clinical outcomes. Controversially, negative aspects, such as cytotoxicity, mNP incorporation, bioaccumulation, acquired autoimmunity, and systemic toxicity have gained attention at the same status of importance, concerning the release of mNPs from these surface systems. The balance between the promising prospects of system releasing mNPs and the undesirable long-term adverse reactions require further investigation. The scarcity of knowledge and the methods of analysis of nanoscale-based systems to control the sequence of migration, interaction, and nanoparticle incorporation with human tissues raise hesitation about their efficacy and safety. Looking ahead, this innovative approach requires additional scientific investigation for permitting an evolution of implants without counterpoints, while updating implant surface technologies to a new level of development. This critical review has explored the promising properties of metals at the nano-scale to promote broad-spectrum bacterial control, allowing for a decrease in using systemic antibiotics. Attempts have also been made to discuss the existing limitations and the future challenges regarding these technologies, besides the negative findings that are explored in the literature.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Kunrath MF, Diz FM, Magini R, Galárraga-Vinueza ME. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv Colloid Interface Sci 2020; 284:102265. [PMID: 33007580 DOI: 10.1016/j.cis.2020.102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Nanostructured surfaces feature promising biological properties on biomaterials attracting large interest at basic research, implant industry development, and bioengineering applications. Thou, nanoscale interactions at a molecular and cellular level are not yet completely understood and its biological and clinical implications need to be further elucidated. As follows, the aim of this comprehensive review was to evaluate nanostructured surfaces at biomedical implants focusing on surface development, nanostructuration, and nanoengineered drug delivery systems that can induce specific cell interactions in all relevant aspects of biological, reparative, anti-bacterial, anti-inflammatory and clinical processes. The methods and the physio-chemical properties involved in nanotopography performance, the main cellular characteristics involved at surface/cell interaction, and a summary of results and outlooks reported in studies applying nanostructured surfaces and nano-drug delivery systems is presented. The future prospects and commercial translation of this developing field, particularly concerning multifunctional nanostructured surfaces and its clinical implications are further discussed. At a cellular level, nanostructured biomedical implant surfaces can enhance osteogenesis by targeting osteoblasts, osteocytes, and mesenchymal cells, stimulate fibroblast/epithelial cells proliferation and adherence, inhibit bacterial cell proliferation and biofilm accumulation, and act as immune-modulating surfaces targeting macrophages and reducing pro-inflammatory cytokine expression. Moreover, several methodological options to create drug-delivery systems on metallic implant surfaces are available, however, the clinical translation is yet incomplete. The efficiency of which nanostructured/nano-delivery surfaces may target specific cell interactions and favor clinical outcomes needs to be further elucidated in pre-clinical and clinical studies, along with engineering solutions for commercial translation and approval of controlling agencies.
Collapse
|