1
|
Li M, Yang C, Duan A, Xiao P, Lu X, Ma X, Xu Y, Zheng W, Feng C, Mo X, Huang C, Huang L, Shang J, Zheng H. CX43 and oxidative stress are the targets of BCB staining to predict the developmental potential of buffalo oocytes. Reprod Domest Anim 2024; 59:e14673. [PMID: 39086079 DOI: 10.1111/rda.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
This study used the brilliant cresyl blue (BCB) staining method to group buffalo oocytes (BCB+ and BCB-) and perform in vitro maturation, in vitro fertilization and embryo culture. At the same time, molecular biology techniques were used to detect gap junction protein expression and oxidative stress-related indicators to explore the molecular mechanism of BCB staining to predict oocyte developmental potential. The techniques of buffalo oocytes to analyse their developmental potential and used immunofluorescence staining to detect the expression level of CX43 protein, DCFH-DA probe staining to detect ROS levels and qPCR to detect the expression levels of the antioxidant-related genes SOD2 and GPX1. Our results showed that the in vitro maturation rate, embryo cleavage rate and blastocyst rate of buffalo oocytes in the BCB+ group were significantly higher than those in the BCB- group and the control group (p < .05). The expression level of CX43 protein in the BCB+ group was higher than that in the BCB- group both before and after maturation (p < .05). The intensity of ROS in the BCB+ group was significantly lower than that in the BCB- group (p < .05), and the expression levels of the antioxidant-related genes SOD2 and GPX1 in the BCB+ group were significantly higher than those in the BCB- group (p < .05). Brilliant cresyl blue staining could effectively predict the developmental potential of buffalo oocytes. The results of BCB staining were positively correlated with the expression of gap junction protein and antioxidant-related genes and negatively correlated with the reactive oxygen species level, suggesting that the mechanism of BCB staining in predicting the developmental potential of buffalo oocytes might be closely related to antioxidant activity.
Collapse
Affiliation(s)
- MengQi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - ChunYan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - AnQin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning, China
| | - XingRong Lu
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - XiaoYa Ma
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - YuanYuan Xu
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Wei Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Chao Feng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Xia Mo
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - ChenQian Huang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - LiQing Huang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - JiangHua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - HaiYing Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| |
Collapse
|
3
|
Photoacoustic Imaging of Human Vasculature Using LED versus Laser Illumination: A Comparison Study on Tissue Phantoms and In Vivo Humans. SENSORS 2021; 21:s21020424. [PMID: 33435375 PMCID: PMC7827532 DOI: 10.3390/s21020424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Vascular diseases are becoming an epidemic with an increasing aging population and increases in obesity and type II diabetes. Point-of-care (POC) diagnosis and monitoring of vascular diseases is an unmet medical need. Photoacoustic imaging (PAI) provides label-free multiparametric information of deep vasculature based on strong absorption of light photons by hemoglobin molecules. However, conventional PAI systems use bulky nanosecond lasers which hinders POC applications. Recently, light-emitting diodes (LEDs) have emerged as cost-effective and portable optical sources for the PAI of living subjects. However, state-of-art LED arrays carry significantly lower optical energy (<0.5 mJ/pulse) and high pulse repetition frequencies (PRFs) (4 KHz) compared to the high-power laser sources (100 mJ/pulse) with low PRFs of 10 Hz. Given these tradeoffs between portability, cost, optical energy and frame rate, this work systematically studies the deep tissue PAI performance of LED and laser illuminations to help select a suitable source for a given biomedical application. To draw a fair comparison, we developed a fiberoptic array that delivers laser illumination similar to the LED array and uses the same ultrasound transducer and data acquisition platform for PAI with these two illuminations. Several controlled studies on tissue phantoms demonstrated that portable LED arrays with high frame averaging show higher signal-to-noise ratios (SNRs) of up to 30 mm depth, and the high-energy laser source was found to be more effective for imaging depths greater than 30 mm at similar frame rates. Label-free in vivo imaging of human hand vasculature studies further confirmed that the vascular contrast from LED-PAI is similar to laser-PAI for up to 2 cm depths. Therefore, LED-PAI systems have strong potential to be a mobile health care technology for diagnosing vascular diseases such as peripheral arterial disease and stroke in POC and resource poor settings.
Collapse
|