1
|
Chen J, Holt JR, Evans EL, Lowengrub JS, Pathak MM. PIEZO1 regulates leader cell formation and cellular coordination during collective keratinocyte migration. PLoS Comput Biol 2024; 20:e1011855. [PMID: 38578817 PMCID: PMC11023636 DOI: 10.1371/journal.pcbi.1011855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/17/2024] [Accepted: 01/23/2024] [Indexed: 04/07/2024] Open
Abstract
The collective migration of keratinocytes during wound healing requires both the generation and transmission of mechanical forces for individual cellular locomotion and the coordination of movement across cells. Leader cells along the wound edge transmit mechanical and biochemical cues to ensuing follower cells, ensuring their coordinated direction of migration across multiple cells. Despite the observed importance of mechanical cues in leader cell formation and in controlling coordinated directionality of cell migration, the underlying biophysical mechanisms remain elusive. The mechanically-activated ion channel PIEZO1 was recently identified to play an inhibitory role during the reepithelialization of wounds. Here, through an integrative experimental and mathematical modeling approach, we elucidate PIEZO1's contributions to collective migration. Time-lapse microscopy reveals that PIEZO1 activity inhibits leader cell formation at the wound edge. To probe the relationship between PIEZO1 activity, leader cell formation and inhibition of reepithelialization, we developed an integrative 2D continuum model of wound closure that links observations at the single cell and collective cell migration scales. Through numerical simulations and subsequent experimental validation, we found that coordinated directionality plays a key role during wound closure and is inhibited by upregulated PIEZO1 activity. We propose that PIEZO1-mediated retraction suppresses leader cell formation which inhibits coordinated directionality between cells during collective migration.
Collapse
Affiliation(s)
- Jinghao Chen
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Jesse R. Holt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Evans
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Medha M. Pathak
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
2
|
Mukherjee M, Levine H. The alternate ligand Jagged enhances the robustness of Notch signaling patterns. SOFT MATTER 2023. [PMID: 37323020 DOI: 10.1039/d2sm01508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Notch pathway, an example of juxtacrine signaling, is an evolutionary conserved cell-cell communication mechanism. It governs emergent spatiotemporal patterning in tissues during development, wound healing and tumorigenesis. Communication occurs when Notch receptors of one cell bind to either of its ligands, Delta/Jagged of the neighboring cell. In general, Delta-mediated signaling drives neighboring cells to have an opposite fate (lateral inhibition) whereas Jagged-mediated signaling drives cells to maintain similar fates (lateral induction). Here, by deriving and solving a reduced set of 12 coupled ordinary differential equations for the Notch-Delta-Jagged system on a hexagonal grid of cells, we determine the allowed states across different parameter sets. We also show that Jagged (at low dose) acts synergistically with Delta to enable more robust pattern formation by making the neighboring cell states more distinct from each other, despite its lateral induction property. Our findings extend our understanding of the possible synergistic role of Jagged with Delta which had been previously proposed through experiments and models in the context of chick inner ear development. Finally, we show how Jagged can help to expand the bistable (both uniform and hexagon phases are stable) region, where a local perturbation can spread over time in an ordered manner to create a biologically relevant, perfectly ordered lateral inhibition pattern.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
- Depts. of Physics and Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Dullweber T, Erzberger A. Mechanochemical feedback loops in contact-dependent fate patterning. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 32-33:None. [PMID: 37090955 PMCID: PMC10112234 DOI: 10.1016/j.coisb.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To reliably form and maintain structures with specific functions, many multicellular systems evolved to leverage the interplay between biochemical signaling, mechanics, and morphology. We review mechanochemical feedback loops in cases where cell-cell contact-based Notch signaling drives fate decisions, and the corresponding differentiation process leads to contact remodeling. We compare different mechanisms for initial symmetry breaking and subsequent pattern refinement, as well as discuss how patterning outcomes depend on the relationship between biochemical and mechanical timescales. We conclude with an overview of new approaches, including the study of synthetic circuits, and give an outlook on future experimental and theoretical developments toward dissecting and harnessing mechanochemical feedback.
Collapse
Affiliation(s)
- T. Dullweber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| | - A. Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
4
|
Hawley J, Manning C, Biga V, Glendinning P, Papalopulu N. Dynamic switching of lateral inhibition spatial patterns. J R Soc Interface 2022; 19:20220339. [PMID: 36000231 PMCID: PMC9399705 DOI: 10.1098/rsif.2022.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hes genes are transcriptional repressors activated by Notch. In the developing mouse neural tissue, HES5 expression oscillates in neural progenitors (Manning et al. 2019 Nat. Commun. 10, 1-19 (doi:10.1038/s41467-019-10734-8)) and is spatially organized in small clusters of cells with synchronized expression (microclusters). Furthermore, these microclusters are arranged with a spatial periodicity of three-four cells in the dorso-ventral axis and show regular switching between HES5 high/low expression on a longer time scale and larger amplitude than individual temporal oscillators (Biga et al. 2021 Mol. Syst. Biol. 17, e9902 (doi:10.15252/msb.20209902)). However, our initial computational modelling of coupled HES5 could not explain these features of the experimental data. In this study, we provide theoretical results that address these issues with biologically pertinent additions. Here, we report that extending Notch signalling to non-neighbouring progenitor cells is sufficient to generate spatial periodicity of the correct size. In addition, introducing a regular perturbation of Notch signalling by the emerging differentiating cells induces a temporal switching in the spatial pattern, which is longer than an individual cell's periodicity. Thus, with these two new mechanisms, a computational model delivers outputs that closely resemble the complex tissue-level HES5 dynamics. Finally, we predict that such dynamic patterning spreads out differentiation events in space, complementing our previous findings whereby the local synchronization controls the rate of differentiation.
Collapse
Affiliation(s)
- Joshua Hawley
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cerys Manning
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Veronica Biga
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Glendinning
- Department of Mathematics, The University of Manchester, Manchester, UK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Bajpai S, Chelakkot R, Prabhakar R, Inamdar MM. Role of Delta-Notch signalling molecules on cell-cell adhesion in determining heterogeneous chemical and cell morphological patterning. SOFT MATTER 2022; 18:3505-3520. [PMID: 35438097 DOI: 10.1039/d2sm00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell mechanics and motility are responsible for collective motion of cells that result in overall deformation of epithelial tissues. On the other hand, contact-dependent cell-cell signalling is responsible for generating a large variety of intricate, self-organized, spatial patterns of the signalling molecules. Moreover, it is becoming increasingly clear that the combined mechanochemical patterns of cell shape/size and signalling molecules in the tissues, for example, in cancerous and sensory epithelium, are governed by mechanochemical coupling between chemical signalling and cell mechanics. However, a clear quantitative picture of how these two aspects of tissue dynamics, i.e., signalling and mechanics, lead to pattern and form is still emerging. Although, a number of recent experiments demonstrate that cell mechanics, cell motility, and cell-cell signalling are tightly coupled in many morphogenetic processes, relatively few modeling efforts have focused on an integrated approach. We extend the vertex model of an epithelial monolayer to account for contact-dependent signalling between adjacent cells and between non-adjacent neighbors through long protrusional contacts with a feedback mechanism wherein the adhesive strength between adjacent cells is controlled by the expression of the signalling molecules in those cells. Local changes in cell-cell adhesion lead to changes in cell shape and size, which in turn drives changes in the levels of signalling molecules. Our simulations show that even this elementary two-way coupling of chemical signalling and cell mechanics is capable of giving rise to a rich variety of mechanochemical patterns in epithelial tissues. In particular, under certain parametric conditions, bimodal distributions in cell size and shape are obtained, which resemble experimental observations in cancerous and sensory tissues.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
6
|
Fields C, Glazebrook JF, Levin M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci Conscious 2021; 2021:niab013. [PMID: 34345441 PMCID: PMC8327199 DOI: 10.1093/nc/niab013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Theories of consciousness and cognition that assume a neural substrate automatically regard phylogenetically basal, nonneural systems as nonconscious and noncognitive. Here, we advance a scale-free characterization of consciousness and cognition that regards basal systems, including synthetic constructs, as not only informative about the structure and function of experience in more complex systems but also as offering distinct advantages for experimental manipulation. Our "minimal physicalist" approach makes no assumptions beyond those of quantum information theory, and hence is applicable from the molecular scale upwards. We show that standard concepts including integrated information, state broadcasting via small-world networks, and hierarchical Bayesian inference emerge naturally in this setting, and that common phenomena including stigmergic memory, perceptual coarse-graining, and attention switching follow directly from the thermodynamic requirements of classical computation. We show that the self-representation that lies at the heart of human autonoetic awareness can be traced as far back as, and serves the same basic functions as, the stress response in bacteria and other basal systems.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, 600 Lincoln Ave, Charleston, IL 61920 USA
- Department of Mathematics, Adjunct Faculty, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| |
Collapse
|