1
|
Nuñez JG, Paulose J, Möbius W, Beller DA. Range expansions across landscapes with quenched noise. Proc Natl Acad Sci U S A 2024; 121:e2411487121. [PMID: 39136984 PMCID: PMC11348022 DOI: 10.1073/pnas.2411487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.
Collapse
Affiliation(s)
- Jimmy Gonzalez Nuñez
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Jayson Paulose
- Department of Physics, Institute for Fundamental Science, University of Oregon, Eugene, OR97403
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, ExeterEX4 4QH, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QL, United Kingdom
| | - Daniel A. Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
2
|
Tunstall T, Rogers T, Möbius W. Assisted percolation of slow-spreading mutants in heterogeneous environments. Phys Rev E 2023; 108:044401. [PMID: 37978675 DOI: 10.1103/physreve.108.044401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023]
Abstract
Environmental heterogeneity can drive genetic heterogeneity in expanding populations; mutant strains may emerge that trade overall growth rate for an improved ability to survive in patches that are hostile to the wild type. This evolutionary dynamic is of practical importance when seeking to prevent the emergence of damaging traits. We show that a subcritical slow-spreading mutant can attain dominance even when the density of patches is below their percolation threshold and predict this transition using geometrical arguments. This work demonstrates a phenomenon of "assisted percolation", where one subcritical process assists another to achieve supercriticality.
Collapse
Affiliation(s)
- Thomas Tunstall
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - Tim Rogers
- Center for Networks and Collective Behaviour, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| |
Collapse
|
3
|
Eigentler L, Stanley‐Wall NR, Davidson FA. A theoretical framework for multi‐species range expansion in spatially heterogeneous landscapes. OIKOS 2022. [DOI: 10.1111/oik.09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, Univ. of Dundee Dundee UK
- Mathematics, School of Science and Engineering, Univ. of Dundee Dundee UK
| | | | | |
Collapse
|
4
|
Shine R, Alford RA, Blennerhasset R, Brown GP, DeVore JL, Ducatez S, Finnerty P, Greenlees M, Kaiser SW, McCann S, Pettit L, Pizzatto L, Schwarzkopf L, Ward-Fear G, Phillips BL. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci Rep 2021; 11:23574. [PMID: 34876612 PMCID: PMC8651681 DOI: 10.1038/s41598-021-02828-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Invasions often accelerate through time, as dispersal-enhancing traits accumulate at the expanding range edge. How does the dispersal behaviour of individual organisms shift to increase rates of population spread? We collate data from 44 radio-tracking studies (in total, of 650 animals) of cane toads (Rhinella marina) to quantify distances moved per day, and the frequency of displacement in their native range (French Guiana) and two invaded areas (Hawai’i and Australia). We show that toads in their native-range, Hawai’i and eastern Australia are relatively sedentary, while toads dispersing across tropical Australia increased their daily distances travelled from 20 to 200 m per day. That increase reflects an increasing propensity to change diurnal retreat sites every day, as well as to move further during each nocturnal displacement. Daily changes in retreat site evolved earlier than did changes in distances moved per night, indicating a breakdown in philopatry before other movement behaviours were optimised to maximise dispersal.
Collapse
Affiliation(s)
- Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Ducatez
- UMR 241 EIO (UPF, IRD, IFREMER, ILM), Institut de Recherche Pour le Développement (IRD), Papeete, Tahiti, French Polynesia
| | - Patrick Finnerty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew Greenlees
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shannon W Kaiser
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Samantha McCann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lachlan Pettit
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ligia Pizzatto
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgia Ward-Fear
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin L Phillips
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|