1
|
Andreasen CR, Andersen A, Hagelqvist PG, Maytham K, Lauritsen JV, Engberg S, Faber J, Pedersen-Bjergaard U, Knop FK, Vilsbøll T. Sustained heart rate-corrected QT prolongation during recovery from hypoglycaemia in people with type 1 diabetes, independently of recovery to hyperglycaemia or euglycaemia. Diabetes Obes Metab 2023; 25:1566-1575. [PMID: 36752677 DOI: 10.1111/dom.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
AIM To investigate changes in cardiac repolarization abnormalities (heart rate-corrected QT [QTc ] [primary endpoint], T-wave abnormalities) and heart-rate variability measures in people with type 1 diabetes during insulin-induced hypoglycaemia followed by recovery hyperglycaemia versus euglycaemia. METHODS In a randomized crossover study, 24 individuals with type 1 diabetes underwent two experimental clamps with three steady-state phases during electrocardiographic monitoring: (1) a 45-minute euglycaemic phase (5-8 mmol/L), (2) a 60-minute insulin-induced hypoglycaemic phase (2.5 mmol/L), and (3) 60-minute recovery in either hyperglycaemia (20 mmol/L) or euglycaemia (5-8 mmol/L). RESULTS All measured markers of arrhythmic risk indicated increased risk during hypoglycaemia. These findings were accompanied by a decrease in vagal tone during both hyperglycaemia and euglycaemia clamps. Compared with baseline, the QTc interval increased during hypoglycaemia, and 63% of the participants exhibited a peak QTc of more than 500 ms. The prolonged QTc interval was sustained during both recovery phases with no difference between recovery hyperglycaemia versus euglycaemia. During recovery, no change from baseline was observed in heart-rate variability measures. CONCLUSIONS In people with type 1 diabetes, insulin-induced hypoglycaemia prolongs cardiac repolarization, which is sustained during a 60-minute recovery period independently of recovery to hyperglycaemia or euglycaemia. Thus, vulnerability to serious cardiac arrhythmias and sudden cardiac death may extend beyond a hypoglycaemic event, regardless of hyperglycaemic or euglycaemic recovery.
Collapse
Affiliation(s)
- Christine R Andreasen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Per G Hagelqvist
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kaisar Maytham
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Julius V Lauritsen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Susanne Engberg
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Jens Faber
- Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Ricci E, Bartolucci C, Severi S. The virtual sinoatrial node: What did computational models tell us about cardiac pacemaking? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:55-79. [PMID: 36374743 DOI: 10.1016/j.pbiomolbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Since its discovery, the sinoatrial node (SAN) has represented a fascinating and complex matter of research. Despite over a century of discoveries, a full comprehension of pacemaking has still to be achieved. Experiments often produced conflicting evidence that was used either in support or against alternative theories, originating intense debates. In this context, mathematical descriptions of the phenomena underlying the heartbeat have grown in importance in the last decades since they helped in gaining insights where experimental evaluation could not reach. This review presents the most updated SAN computational models and discusses their contribution to our understanding of cardiac pacemaking. Electrophysiological, structural and pathological aspects - as well as the autonomic control over the SAN - are taken into consideration to reach a holistic view of SAN activity.
Collapse
Affiliation(s)
- Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy.
| |
Collapse
|