1
|
Guido I, Vilfan A, Ishibashi K, Sakakibara H, Shiraga M, Bodenschatz E, Golestanian R, Oiwa K. A Synthetic Minimal Beating Axoneme. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107854. [PMID: 35815940 DOI: 10.1002/smll.202107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Cilia and flagella are beating rod-like organelles that enable the directional movement of microorganisms in fluids and fluid transport along the surface of biological organisms or inside organs. The molecular motor axonemal dynein drives their beating by interacting with microtubules. Constructing synthetic beating systems with axonemal dynein capable of mimicking ciliary beating still represents a major challenge. Here, the bottom-up engineering of a sustained beating synthoneme consisting of a pair of microtubules connected by a series of periodic arrays of approximately eight axonemal dyneins is reported. A model leads to the understanding of the motion through the cooperative, cyclic association-dissociation of the molecular motor from the microtubules. The synthoneme represents a bottom-up self-organized bio-molecular machine at the nanoscale with cilia-like properties.
Collapse
Affiliation(s)
- Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Kenta Ishibashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 5650871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, 565-0871, Japan
| | - Hitoshi Sakakibara
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Misaki Shiraga
- Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, 37073, Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
- Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| |
Collapse
|
2
|
Omori T, Munakata S, Ishikawa T. Self-sustaining oscillation of two axonemal microtubules based on a stochastic bonding model between microtubules and dynein. Phys Rev E 2022; 106:014402. [PMID: 35974562 DOI: 10.1103/physreve.106.014402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The motility of cilia and flagella plays important physiological roles, and there has been a great deal of research on the mechanisms underlying the motility of molecular motors. Although recent molecular structural analyses have revealed the components of the ciliary axoneme, the mechanisms involved in the regulation of dynein activity are still unknown, and how multiple dyneins coordinate their movements remains unclear. In particular, the mode of binding for axonemal dynein has not been elucidated. In this study, we constructed a thermodynamic stochastic model of microtubule-dynein coupling and reproduced the experiments of Aoyama and Kamiya on the minimal component of axonemal microtubule-dynein. We then identified the binding mode of axonemal dynein and clarified the relationship between dynein activity distribution and axonemal movement. Based on our numerical results, the slip-bond mechanism agrees quantitatively with the experimental results in terms of amplitude, frequency, and propagation velocity, implying that axial microtubule-dynein coupling may follow a slip-bond mechanism. Moreover, the frequency and propagation velocity decayed in proportion to the fourth power of microtubule length, and the critical load of the trigger for the oscillation agreed well with Euler's critical load.
Collapse
Affiliation(s)
- T Omori
- Department of Finemechanics, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| | - S Munakata
- Department of Biomedical Engineering, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| | - T Ishikawa
- Department of Finemechanics, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
- Department of Biomedical Engineering, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| |
Collapse
|
3
|
Collesano L, Guido I, Golestanian R, Vilfan A. Active beating modes of two clamped filaments driven by molecular motors. J R Soc Interface 2022; 19:20210693. [PMID: 34983201 PMCID: PMC8728166 DOI: 10.1098/rsif.2021.0693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Biological cilia pump the surrounding fluid by asymmetric beating that is driven by dynein motors between sliding microtubule doublets. The complexity of biological cilia raises the question about minimal systems that can re-create similar patterns of motion. One such system consists of a pair of microtubules that are clamped at the proximal end. They interact through dynein motors that cover one of the filaments and pull against the other one. Here, we study theoretically the static shapes and the active dynamics of such a system. Using the theory of elastica, we analyse the shapes of two filaments of different lengths with clamped ends. Starting from equal lengths, we observe a transition similar to Euler buckling leading to a planar shape. When further increasing the length ratio, the system assumes a non-planar shape with spontaneously broken chiral symmetry after a secondary bifurcation and then transitions to planar again. The predicted curves agree with experimentally observed shapes of microtubule pairs. The dynamical system can have a stable fixed point, with either bent or straight filaments, or limit cycle oscillations. The latter match many properties of ciliary motility, demonstrating that a two-filament system can serve as a minimal actively beating model.
Collapse
Affiliation(s)
- Laura Collesano
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
| | - Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen 37077, Germany
- Jožef Stefan Institute, Ljubljana 1000, Slovenia
| |
Collapse
|