1
|
Bertacchi M, Maharaux G, Loubat A, Jung M, Studer M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 2024; 13:e98096. [PMID: 39485283 PMCID: PMC11581432 DOI: 10.7554/elife.98096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.
Collapse
Affiliation(s)
- Michele Bertacchi
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Gwendoline Maharaux
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Agnès Loubat
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Matthieu Jung
- GenomEast platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Michèle Studer
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| |
Collapse
|
2
|
Whye D, Norabuena EM, Srinivasan GR, Wood D, Polanco TJ, Makhortova NR, Sahin M, Buttermore ED. A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs. Curr Protoc 2024; 4:e70022. [PMID: 39400999 DOI: 10.1002/cpz1.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Erika M Norabuena
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Gayathri Rajaram Srinivasan
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Taryn J Polanco
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids. Front Genet 2024; 15:1440583. [PMID: 39391063 PMCID: PMC11465425 DOI: 10.3389/fgene.2024.1440583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Neural organoids have emerged as valuable tools for studying the developing brain, sparking enthusiasm and driving their adoption in disease modeling, drug screening, and investigating fetal neural development. The increasing popularity of neural organoids as models has led to a wide range of methodologies aimed at continuous improvement and refinement. Consequently, research groups often improve and reconfigure protocols to create region-specific organoids, resulting in diverse phenotypes, including variations in morphology, gene expression, and cell populations. While these improvements are exciting, routine adoptions of such modifications and protocols in the research laboratories are often challenging due to the reiterative empirical testing necessary to validate the cell types generated. To address this challenge, we systematically compare the similarities and differences that exist across published protocols that generates subpallial-specific organoids to date. In this review, we focus specifically on exploring the production of major GABAergic neuronal subtypes, especially Medium Spiny Neurons (MSNs) and Interneurons (INs), from multiple subpallial organoid protocols. Importantly, we look to evaluate the cell type diversity and the molecular pathways manipulated to generate them, thus broadening our understanding of the existing subpallial organoids as well as assessing the in vitro applicability of specific patterning factors. Lastly, we discuss the current challenges and outlook on the improved patterning of region-specific neural organoids. Given the critical roles MSN and IN dysfunction play in neurological disorders, comprehending the GABAergic neurons generated by neural organoids will undoubtedly facilitate clinical translation.
Collapse
Affiliation(s)
- Narciso Pavon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Neuroscience and Behavior, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Kim MH, Thanuthanakhun N, Kino-oka M. Stable and efficient generation of functional iPSC-derived neural progenitor cell rosettes through regulation of collective cell-cell behavior. Front Bioeng Biotechnol 2024; 11:1269108. [PMID: 38268936 PMCID: PMC10806250 DOI: 10.3389/fbioe.2023.1269108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Although the potential of stem cells to differentiate into several cell types has shown promise in regenerative medicine, low differentiation efficiency and poor reproducibility significantly limit their practical application. We developed an effective and robust differentiation strategy for the efficient and robust generation of neural progenitor cell rosettes from induced pluripotent stem cells (iPSCs) incorporating botulinum hemagglutinin (HA). Treatment with HA suppressed the spontaneous differentiation of iPSCs cultured under undirected differentiation conditions, resulting in the preservation of their pluripotency. Moreover, treatment with HA during neural progenitor differentiation combined with dual SMAD inhibition generated a highly homogeneous population of PAX6-and SOX1-expressing neural progenitor cells with 8.4-fold higher yields of neural progenitor cells than untreated control cultures. These neural progenitor cells formed radially organized rosettes surrounding the central lumen. This differentiation method enhanced the generation of functional iPSC-derived neural progenitor cell rosettes throughout the culture vessel, suggesting that the regulation of collective cell-cell behavior using HA plays a morphogenetically important role in rosette formation and maturation. These findings show the significance of HA in the suppression of spontaneous differentiation through spatial homogeneity. The study proposes a novel methodology for the efficient derivation of functional iPSC-derived neural progenitor cell rosettes.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Research Base for Cell Manufacturability, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
6
|
Webster SE, Spitsbergen JB, Linn DM, Webster MK, Otteson D, Cooley-Themm C, Linn CL. Transcriptome Changes in Retinal Pigment Epithelium Post-PNU-282987 Treatment Associated with Adult Retinal Neurogenesis in Mice. J Mol Neurosci 2022; 72:1990-2010. [PMID: 35867327 DOI: 10.1007/s12031-022-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PNU-282987, a selective alpha7 nicotinic acetylcholine receptor agonist, has previously been shown to have both neurogenic and broad regenerative effects in the adult murine retina. The objective of this study was to assay the molecular mechanism by which PNU-282987 promotes the production of Muller-derived progenitor cells through signaling via the resident retinal pigment epithelium. These Muller-derived progenitor cells generate a myriad of differentiated neurons throughout the retina that have previously been characterized by morphology. Herein, we demonstrate that topical application of PNU-282987 stimulates production of functional neurons as measured by electroretinograms. Further, we examine the mechanism of how this phenomenon occurs through activation of this atypical receptor using a transcriptomic approach isolated retinal pigment epithelium activated by PNU-282987 and in whole retina. We provide evidence that PNU-282987 causes a bi-modal signaling event in which early activation primes the retina with an inflammatory response and developmental signaling cues, followed by an inhibition of gliotic mechanisms and a decrease in the immune response, ending with upregulation of genes associated with specific retinal neuron generation. Taken together, these data provide evidence that PNU-282987 activates the retinal pigment epithelium to signal to Muller glia to produce Muller-derived progenitor cells, which can differentiate into new, functional neurons in adult mice. These data not only increase our understanding of how adult mammalian retinal regeneration can occur, but also provide therapeutic promise for treating functional vision loss.
Collapse
Affiliation(s)
- Sarah E Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jake B Spitsbergen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Grand Rapids, MI, USA
| | - Mark K Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Deborah Otteson
- University of Houston College of Optometry, Houston, TX, USA
| | - Cynthia Cooley-Themm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Cindy L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
| |
Collapse
|
7
|
Sears KE, Gullapalli K, Trivedi D, Mihas A, Bukys MA, Jensen J. Controlling neural territory patterning from pluripotency using a systems developmental biology approach. iScience 2022; 25:104133. [PMID: 35434550 PMCID: PMC9010746 DOI: 10.1016/j.isci.2022.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/09/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Successful manufacture of specialized human cells requires process understanding of directed differentiation. Here, we apply high-dimensional Design of Experiments (HD-DoE) methodology to identify critical process parameters (CPPs) that govern neural territory patterning from pluripotency—the first stage toward specification of central nervous system (CNS) cell fates. Using computerized experimental design, 7 developmental signaling pathways were simultaneously perturbed in human pluripotent stem cell culture. Regionally specific genes spanning the anterior-posterior and dorsal-ventral axes of the developing embryo were measured after 3 days and mathematical models describing pathway control were developed using regression analysis. High-dimensional models revealed particular combinations of signaling inputs that induce expression profiles consistent with emerging CNS territories and defined CPPs for anterior and posterior neuroectoderm patterning. The results demonstrate the importance of combinatorial control during neural induction and challenge the use of generic neural induction strategies such as dual-SMAD inhibition, when seeking to specify particular lineages from pluripotency. Mathematical models describe pathway control of neuroectoderm marker expression Stage 1 media conditions optimized for regionally specific neuroectoderm in 3 days Optimized conditions are more consistent than dual-SMADi across hiPSC lines
Collapse
|
8
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
9
|
Salehi H, Razavi S, Esfandiari E, Kazemi M, Amini S, Amirpour N. Application of Hanging Drop Culture for Retinal Precursor-Like Cells Differentiation of Human Adipose-Derived Stem Cells Using Small Molecules. J Mol Neurosci 2019; 69:597-607. [PMID: 31363912 DOI: 10.1007/s12031-019-01388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Retinal degenerative diseases lead to blindness due to poorly regenerative potential of the retina. Recently, cell therapy is more considered for degenerative diseases. Autologous mesenchymal stem cells derived from adipose tissue are a suitable source for this purpose. Therefore, we conducted a stepwise efficient method to differentiate human adipose-derived stem cells (hADSCs) into retinal precursor-like cells in vitro. We compared two differentiation protocols, monolayer and hanging drop cultures. Through the defined medium and 3D hanging drop culture method, we could achieve up to 75% retinal precursor gene expression profile (PAX6, RAX, CHX10, and CRX) from hADSCs. By imitation of in vivo development, for direct conversion of stem cells into retinal cells, the suppression of the BMP, Nodal, and Wnt signaling pathways was carried out by using three small molecules. The hADSCs were primarily differentiated into anterior neuroectodermal cells by expression of OTX2, SIX3, and Β-TUB III and then the differentiated cells were propelled into the retinal cells. According to our data from real-time PCR, RT-PCR, immunocytochemistry, and functional assay, it seems that the hanging drop method improved retinal precursor differentiation yield which these precursor-like cells respond to glutamate neurotransmitter. Regarding the easy accessibility and immunosuppressive properties of hADSCs and more efficient hanging drop method, this study may be useful for future autologous cell therapy of retinal degenerative disorders.
Collapse
Affiliation(s)
- Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Polevoy H, Gutkovich YE, Michaelov A, Volovik Y, Elkouby YM, Frank D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep 2019; 20:embr.201845842. [PMID: 30936121 DOI: 10.15252/embr.201845842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
During amphibian development, neural patterning occurs via a two-step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re-specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt-signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP-antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high-to-low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF-dependent manner, while inhibiting hindbrain fates. These results suggest a need to re-evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.
Collapse
Affiliation(s)
- Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoni E Gutkovich
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Michaelov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Volovik
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaniv M Elkouby
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Pluripotent Stem Cells as Models of Retina Development. Mol Neurobiol 2019; 56:6056-6070. [DOI: 10.1007/s12035-019-1504-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
12
|
Differentiation of eye field neuroectoderm from human adipose-derived stem cells by using small-molecules and hADSC-conditioned medium. Ann Anat 2019; 221:17-26. [DOI: 10.1016/j.aanat.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
|
13
|
Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL, Welsbie DS, Zack DJ. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells. Stem Cells Transl Med 2017; 6:1972-1986. [PMID: 29024560 PMCID: PMC6430043 DOI: 10.1002/sctm.17-0059] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly‐interspaced short palindromic repeats(CRISPR)‐Cas9 engineered reporter knock‐in embryonic stem cell lines in which tdTomato and a unique cell‐surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)‐enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti‐THY1.2‐based protocol that allows for large‐scale RGC immunopurification. RNA‐sequencing confirmed the similarity of the stem cell‐derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high‐throughput screening for neuroprotective compounds. Using this system in combination with RNAi‐based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large‐scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine2017;6:1972–1986
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Mitchell
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek S Welsbie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Shiley Eye Institute, University of California, San Diego, La Jolla, California, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Lu AQ, Popova EY, Barnstable CJ. Activin Signals through SMAD2/3 to Increase Photoreceptor Precursor Yield during Embryonic Stem Cell Differentiation. Stem Cell Reports 2017; 9:838-852. [PMID: 28781074 PMCID: PMC5599185 DOI: 10.1016/j.stemcr.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
In vitro differentiation of mouse embryonic stem cells (ESCs) into retinal fates can be used to study the roles of exogenous factors acting through multiple signaling pathways during retina development. Application of activin A during a specific time frame that corresponds to early embryonic retinogenesis caused increased generation of CRX+ photoreceptor precursors and decreased PAX6+ retinal progenitor cells (RPCs). Following activin A treatment, SMAD2/3 was activated in RPCs and bound to promoter regions of key RPC and photoreceptor genes. The effect of activin on CRX expression was repressed by pharmacological inhibition of SMAD2/3 phosphorylation. Activin signaling through SMAD2/3 in RPCs regulates expression of transcription factors involved in cell type determination and promotes photoreceptor lineage specification. Our findings can contribute to the production of photoreceptors for cell replacement therapy.
Collapse
Affiliation(s)
- Amy Q Lu
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Evgenya Y Popova
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
15
|
Amirpour N, Razavi S, Esfandiari E, Hashemibeni B, Kazemi M, Salehi H. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules. Int J Dev Neurosci 2017; 59:21-30. [PMID: 28285945 DOI: 10.1016/j.ijdevneu.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023] Open
Abstract
Inspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose-derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β-TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT-PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batoul Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Wang Y, Li Y, Xing Q, Han XG, Dong X, Lu Y, Zhou M. Sevoflurane anesthesia in pregnant rats negatively affects nerve function in offspring potentially via inhibition of the Wnt/β-catenin pathway. Mol Med Rep 2017; 15:2753-2759. [PMID: 28447764 DOI: 10.3892/mmr.2017.6316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
Due to the rapid development of medical technology used to perform intrauterine procedures during pregnancy, the number of patients receiving fetal surgery under general anesthesia is increasing. The aim of the present study was to determine the effects of anesthetics on the offspring of rats, and to identify the potential mechanisms underlying these effects. On day 14 of pregnancy, Sprague‑Dawley rats were equally divided into the following 3 groups (n=9): Control group (n=3), 3% sevoflurane group (n=3) and 4% sevoflurane group (n=3). Following birth of the offspring, the juvenile rats were assessed using an open‑field test, Morris water maze and a continuous passive avoidance test on different days to determine their learning abilities and memory. Western blot and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses were used to examine the expression of multiple critical factors associated with the proliferation and apoptosis of nerve cells, including Ki67, nestin, B cell leukemia/lymphoma 2 (Bcl-2), BCL2 associated X (Bax) and caspase‑3. Additionally, the level of adenosine triphosphate production among the 3 groups were compared. Furthermore, expression alterations in of glycogen synthase kinase‑3β (GSK‑3β) and β‑catenin were examined. The Morris water maze experiment revealed that an increased concentration of sevoflurane exposure significantly reduced the learning and memory abilities of the juvenile rats when compared with controls. In addition, western blotting and RT-qPCR analyses determined that the protein and mRNA expression levels of Bax, caspase‑3 and GSK‑3β were significantly increased relative to the controls. By contrast, the expression levels of nestin, Ki‑67, Bcl‑2 and β‑catenin were significantly reduced. The results of the present study suggest that exposure of pregnant mice to sevoflurane anesthesia demonstrates a negative effect on the learning and memory abilities of their offspring, and the Wnt/β-catenin signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Yiyao Wang
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yu Li
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qunzhi Xing
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xuechan G Han
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xu Dong
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yiping Lu
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mintao Zhou
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
17
|
Leung AW, Murdoch B, Salem AF, Prasad MS, Gomez GA, García-Castro MI. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate. Development 2016; 143:398-410. [PMID: 26839343 DOI: 10.1242/dev.130849] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates.
Collapse
Affiliation(s)
- Alan W Leung
- Kline Biology Tower, Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA Yale Stem Cell Center, 10 Amistad Street, New Haven, CT 06519, USA
| | - Barbara Murdoch
- Department of Biology, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226, USA
| | - Ahmed F Salem
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Gustavo A Gomez
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Martín I García-Castro
- Kline Biology Tower, Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Capowski EE, Wright LS, Liang K, Phillips MJ, Wallace K, Petelinsek A, Hagstrom A, Pinilla I, Borys K, Lien J, Min JH, Keles S, Thomson JA, Gamm DM. Regulation of WNT Signaling by VSX2 During Optic Vesicle Patterning in Human Induced Pluripotent Stem Cells. Stem Cells 2016; 34:2625-2634. [PMID: 27301076 DOI: 10.1002/stem.2414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Few gene targets of Visual System Homeobox 2 (VSX2) have been identified despite its broad and critical role in the maintenance of neural retina (NR) fate during early retinogenesis. We performed VSX2 ChIP-seq and ChIP-PCR assays on early stage optic vesicle-like structures (OVs) derived from human iPS cells (hiPSCs), which highlighted WNT pathway genes as direct regulatory targets of VSX2. Examination of early NR patterning in hiPSC-OVs from a patient with a functional null mutation in VSX2 revealed mis-expression and upregulation of WNT pathway components and retinal pigmented epithelium (RPE) markers in comparison to control hiPSC-OVs. Furthermore, pharmacological inhibition of WNT signaling rescued the early mutant phenotype, whereas augmentation of WNT signaling in control hiPSC-OVs phenocopied the mutant. These findings reveal an important role for VSX2 as a regulator of WNT signaling and suggest that VSX2 may act to maintain NR identity at the expense of RPE in part by direct repression of WNT pathway constituents. Stem Cells 2016;34:2625-2634.
Collapse
Affiliation(s)
| | - Lynda S Wright
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kun Liang
- Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kyle Wallace
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Petelinsek
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Hagstrom
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Isabel Pinilla
- Aragon Institute for Health Research (IIS Aragón), Lozano Blesa University Hospital, Zaragoza, 50009, Spain.,Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, 50009, Spain
| | - Katarzyna Borys
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jessica Lien
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jee Hong Min
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Ophthamology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
19
|
Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective. Stem Cells Int 2016; 2016:8291260. [PMID: 27069483 PMCID: PMC4812494 DOI: 10.1155/2016/8291260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/24/2016] [Indexed: 01/19/2023] Open
Abstract
Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.
Collapse
|
20
|
Yang JW, Ma W, Luo T, Wang DY, Lu JJ, Li XT, Wang TT, Cheng JR, Ru J, Gao Y, Liu J, Liang Z, Yang ZY, Dai P, He YS, Guo XB, Guo JH, Li LY. BDNF promotes human neural stem cell growth via GSK-3β-mediated crosstalk with the wnt/β-catenin signaling pathway. Growth Factors 2016; 34:19-32. [PMID: 27144323 DOI: 10.3109/08977194.2016.1157791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in neural stem cell (NSC) growth. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord NSCs (hESC-NSCs) in vitro. We found an increase in hESC-NSC growth by BDNF overexpression. Furthermore, expression of Wnt1, Frizzled1 and Dsh was upregulated, whereas GSK-3β expression was downregulated. In contrast, hESC-NSC growth was decreased by BDNF RNA interference. BDNF, Wnt1 and β-catenin components were all downregulated, whereas GSK-3β was upregulated. Next, we treated hESC-NSCs with 6-bromoindirubin-3'-oxime (BIO), a small molecule inhibitor of GSK-3β. BIO reduced the effects of BDNF upregulation/downregulation on the cell number, soma size and differentiation, and suppressed the effect of BDNF modulation on the Wnt signaling pathway. Our findings suggest that BDNF promotes hESC-NSC growth in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β.
Collapse
Affiliation(s)
- Jin-Wei Yang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Wei Ma
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tao Luo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Dong-Yan Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Jun Lu
- c Department of Anatomy and Biomedical Sciences , Monash University , Melbourne , Australia
| | - Xing-Tong Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tong-Tong Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jing-Ru Cheng
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Jin Ru
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Yan Gao
- d Department of Pathology , Children's Hospital of Kunming City , Yunnan Kunming , China , and
| | - Jia Liu
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Zhang Liang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Zhi-Yong Yang
- e Department of Neurosurgery , First Affiliated Hospital of Kunming Medical University , Yunnan Kunming , China
| | - Ping Dai
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Yong-Sheng He
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Xiao-Bing Guo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Hui Guo
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Li-Yan Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| |
Collapse
|
21
|
Telezhkin V, Schnell C, Yarova P, Yung S, Cope E, Hughes A, Thompson BA, Sanders P, Geater C, Hancock JM, Joy S, Badder L, Connor-Robson N, Comella A, Straccia M, Bombau G, Brown JT, Canals JM, Randall AD, Allen ND, Kemp PJ. Forced cell cycle exit and modulation of GABAA, CREB, and GSK3β signaling promote functional maturation of induced pluripotent stem cell-derived neurons. Am J Physiol Cell Physiol 2015; 310:C520-41. [PMID: 26718628 DOI: 10.1152/ajpcell.00166.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.
Collapse
Affiliation(s)
| | | | - Polina Yarova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sun Yung
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Cope
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alis Hughes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Philip Sanders
- Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Charlene Geater
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jane M Hancock
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom; and
| | - Shona Joy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Luned Badder
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Andrea Comella
- Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Marco Straccia
- Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Georgina Bombau
- Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jon T Brown
- Hatherly Laboratory, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Josep M Canals
- Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Andrew D Randall
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom; and Hatherly Laboratory, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Nicholas D Allen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| | - Paul J Kemp
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Yang JW, Ru J, Ma W, Gao Y, Liang Z, Liu J, Guo JH, Li LY. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides 2015; 54:35-46. [PMID: 26311646 DOI: 10.1016/j.npep.2015.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β.
Collapse
Affiliation(s)
- Jin-Wei Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Jin Ru
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Yan Gao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pathology, Children's Hospital of Kunming City, Kunming, Yunnan 650034, China.
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Jia Liu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
23
|
Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development 2015; 142:2864-75. [PMID: 26329597 PMCID: PMC4958456 DOI: 10.1242/dev.119768] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Laure Verrier
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
24
|
Bertacchi M, Lupo G, Pandolfini L, Casarosa S, D'Onofrio M, Pedersen RA, Harris WA, Cremisi F. Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization. Stem Cell Reports 2015; 5:532-45. [PMID: 26388287 PMCID: PMC4624997 DOI: 10.1016/j.stemcr.2015.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023] Open
Abstract
Retinal progenitors are initially found in the anterior neural plate region known as the eye field, whereas neighboring areas undertake telencephalic or hypothalamic development. Eye field cells become specified by switching on a network of eye field transcription factors, but the extracellular cues activating this network remain unclear. In this study, we used chemically defined media to induce in vitro differentiation of mouse embryonic stem cells (ESCs) toward eye field fates. Inhibition of Wnt/β-catenin signaling was sufficient to drive ESCs to telencephalic, but not retinal, fates. Instead, retinal progenitors could be generated from competent differentiating mouse ESCs by activation of Activin/Nodal signaling within a narrow temporal window corresponding to the emergence of primitive anterior neural progenitors. Activin also promoted eye field gene expression in differentiating human ESCs. Our results reveal insights into the mechanisms of eye field specification and open new avenues toward the generation of retinal progenitors for translational medicine.
Collapse
Affiliation(s)
- Michele Bertacchi
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Luca Pandolfini
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy
| | - Simona Casarosa
- Centre for Integrative Biology, University of Trento, Via delle Regole 101, 38123 Mattarello (Trento), Italy
| | - Mara D'Onofrio
- Genomics Facility, European Brain Research Institute "Rita Levi-Montalcini," Via del Fosso di Fiorano 64, 00143 Rome, Italy; Istituto di Farmacologia Traslazionale, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Roger A Pedersen
- Department of Surgery and The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, West Forvie Building, Robinson Way, Cambridge CB2 0SZ, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Federico Cremisi
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy; Institute of Biomedical Technologies (ITB), National Research Council (CNR) of Pisa, Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
25
|
Pandit T, Jidigam VK, Patthey C, Gunhaga L. Neural retina identity is specified by lens-derived BMP signals. Development 2015; 142:1850-9. [PMID: 25968316 PMCID: PMC4440930 DOI: 10.1242/dev.123653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity. SUMMARY: BMP signals from the lens are crucial to maintain eye-field character, inhibit dorsal telencephalic cell identity, and specificy neural retina cells in chick embryos.
Collapse
Affiliation(s)
- Tanushree Pandit
- Umeå Centre for Molecular Medicine, Umeå University, Umeå 901 87, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå 901 87, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, Umeå 901 87, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
26
|
Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells 2015; 33:2496-508. [PMID: 25913744 DOI: 10.1002/stem.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/27/2023]
Abstract
It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.
Collapse
Affiliation(s)
| | - Lei Lan
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | - Yuri Bozzi
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simona Casarosa
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
27
|
Mimura S, Suga M, Liu Y, Kinehara M, Yanagihara K, Ohnuma K, Nikawa H, Furue MK. Synergistic effects of FGF-2 and Activin A on early neural differentiation of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2015; 51:769-75. [PMID: 25898826 DOI: 10.1007/s11626-015-9909-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Neural differentiation is an important target of human embryonic stem cells, which provide a source for cell-based therapy, developmental biology, and pharmaceutical research. Previous studies revealed that inhibition of the bone morphogenetic protein is required for neural induction from human embryonic stem cells. On the contrary, the functions of fibroblast growth factors and Activin/Nodal signaling are controversial. Fibroblast growth factor-2 and Activin/Nodal pathways exert divergent influences on human embryonic stem cell concerning the maintenance of both pluripotency and cellular differentiation. We hypothesized that the combination of fibroblast growth factor-2 and Activin A at various concentrations synergistically exerts diverse effects on cell differentiation. To determine the effects of fibroblast growth factor-2 and Activin A on cellular differentiation into neural lineages, we examined the expression of neural differentiation markers in human embryonic stem cells treated with fibroblast growth factor-2 and/or Activin A at various concentrations in a growth factor-defined serum-free medium in short-term culture. In this study, we provide evidence that fibroblast growth factor-2 and Activin A synergistically regulated the initiation of human embryonic stem cell differentiation into neural cell lineages even though human embryonic stem cells autonomously differentiate into neural cell lineages.
Collapse
Affiliation(s)
- Sumiyo Mimura
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Oral Biology & Engineering, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masaki Kinehara
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
28
|
Cajal M, Creuzet SE, Papanayotou C, Sabéran-Djoneidi D, Chuva de Sousa Lopes SM, Zwijsen A, Collignon J, Camus A. A conserved role for non-neural ectoderm cells in early neural development. Development 2014; 141:4127-38. [DOI: 10.1242/dev.107425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Sophie E. Creuzet
- Institut de Neurobiologie, Laboratoire Neurobiologie et Développement, CNRS-UPR3294, avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Costis Papanayotou
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Délara Sabéran-Djoneidi
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | | | - An Zwijsen
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, and KU Leuven, Department for Human Genetics, Leuven 3000, Belgium
| | - Jérôme Collignon
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Anne Camus
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| |
Collapse
|
29
|
Bertacchi M, Pandolfini L, D'Onofrio M, Brandi R, Cremisi F. The double inhibition of endogenously produced BMP and Wnt factors synergistically triggers dorsal telencephalic differentiation of mouse ES cells. Dev Neurobiol 2014; 75:66-79. [PMID: 25044881 DOI: 10.1002/dneu.22209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 11/06/2022]
Abstract
Embryonic stem (ES) cells are becoming a popular model of in vitro neurogenesis, as they display intrinsic capability to generate neural progenitors that undergo the known steps of in vivo neural development. These include the acquisition of distinct regional fates, which depend on growth factors and signals that are present in the culture medium. The control of the intracellular signaling that is active at different steps of ES cell neuralization, even when cells are cultured in chemically defined medium, is complicated by the endogenous production of growth factors. However, this endogenous production has been poorly investigated so far. To address this point, we performed a high-throughput analysis of the expression of morphogens during mouse ES cell neuralization in minimal medium. We found that during their neuralization, ES cells increased the expression of members of Wnt, Fibroblast Growth Factor (FGF), and BMP families. Conversely, the expression of Activin/Nodal and Shh ligands was low in early steps of neuralization. In this experimental condition, neural progenitors and neurons generated by ES cells expressed a gene expression profile that was consistent with a midbrain identity. We found that endogenous BMP and Wnt signaling, but not FGF signaling, synergistically affected ES cell neural patterning, by turning off a profile of dorsal/telencephalic gene expression. Double BMP and Wnt inhibition allowed neuralized ES cells to sequentially activate key genes of cortical differentiation. Our findings are consistent with a novel synergistic effect of Wnt and BMP endogenous signaling of ES cells in inhibiting a cortical differentiation program.
Collapse
|
30
|
Turner DA, Trott J, Hayward P, Rué P, Martinez Arias A. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 2014; 3:614-26. [PMID: 24950969 PMCID: PMC4154298 DOI: 10.1242/bio.20148409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
31
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|