1
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
2
|
Comparative Transcriptomics Reveals Gene Families Associated with Predatory Behavior in Photuris femme fatale Fireflies. Genes (Basel) 2020; 11:genes11060627. [PMID: 32517321 PMCID: PMC7348864 DOI: 10.3390/genes11060627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying the basis of phenotypic variation is a key objective of genetics. This work has been mostly limited to model systems with a plethora of genetic manipulation and functional characterization tools. With the development of high-throughput sequencing and new computational tools, it is possible to identify candidate genes related to phenotypic variation in non-model organisms. Fireflies are excellent for studying phenotypic variation because of their diverse and well-characterized behaviors. Most adult fireflies emit a single mating flash pattern and do not eat. In contrast, adult females of many species in the genus Photuris employ multiple flash patterns and prey upon mate-seeking males of other firefly species. To investigate the genetic basis for this variation, we used comparative transcriptomics to identify positively selected genes between a predatory firefly, Photuris sp., and a non-predatory relative, Photuris frontalis, controlling for genes generally under selection in fireflies by comparing to a Photinus firefly. Nine gene families were identified under positive selection in the predatory versus non-predatory Photuris comparison, including genes involved in digestion, detoxification, vision, reproduction, and neural processes. These results generate intriguing hypotheses about the genetic basis for insect behavior and highlight the utility of comparative transcriptomic tools to investigate complex behaviors in non-model systems.
Collapse
|
3
|
Bentz AB, Thomas GWC, Rusch DB, Rosvall KA. Tissue-specific expression profiles and positive selection analysis in the tree swallow (Tachycineta bicolor) using a de novo transcriptome assembly. Sci Rep 2019; 9:15849. [PMID: 31676844 PMCID: PMC6825141 DOI: 10.1038/s41598-019-52312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Tree swallows (Tachycineta bicolor) are one of the most commonly studied wild birds in North America. They have advanced numerous research areas, including life history, physiology, and organismal responses to global change; however, transcriptomic resources are scarce. To further advance the utility of this system for biologists across disciplines, we generated a transcriptome for the tree swallow using six tissues (brain, blood, ovary, spleen, liver, and muscle) collected from breeding females. We de novo assembled 207,739 transcripts, which we aligned to 14,717 high confidence protein-coding genes. We then characterized each tissue with regard to its unique genes and processes and applied this transcriptome to two fundamental questions in evolutionary biology and endocrinology. First, we analyzed 3,015 single-copy orthologs and identified 46 genes under positive selection in the tree swallow lineage, including those with putative links to adaptations in this species. Second, we analyzed tissue-specific expression patterns of genes involved in sex steroidogenesis and processing. Enzymes capable of synthesizing these behaviorally relevant hormones were largely limited to the ovary, whereas steroid binding genes were found in nearly all other tissues, highlighting the potential for local regulation of sex steroid-mediated traits. These analyses provide new insights into potential sources of phenotypic variation in a free-living female bird and advance our understanding of fundamental questions in evolutionary and organismal biology.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
4
|
Wang Q, Lu W, Yang J, Jiang L, Zhang Q, Kan X, Yang X. Comparative transcriptomics in three Passerida species provides insights into the evolution of avian mitochondrial complex I. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:27-36. [DOI: 10.1016/j.cbd.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
5
|
Frias-Soler RC, Villarín Pildaín L, Hotz-Wagenblatt A, Kolibius J, Bairlein F, Wink M. De novo annotation of the transcriptome of the Northern Wheatear ( Oenanthe oenanthe). PeerJ 2018; 6:e5860. [PMID: 30498627 PMCID: PMC6251345 DOI: 10.7717/peerj.5860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022] Open
Abstract
We have sequenced a partial transcriptome of the Northern Wheatear (Oenanthe oenanthe), a species with one of the longest migrations on Earth. The transcriptome was constructed de novo using RNA-Seq sequence data from the pooled mRNA of six different tissues: brain, muscle, intestine, liver, adipose tissue and skin. The samples came from nine captive-bred wheatears collected at three different stages of the endogenous autumn migratory period: (1) lean birds prior the onset of migration, (2) during the fattening stage and (3) individuals at their migratory body mass plateau, when they have almost doubled their lean body mass. The sample structure used to build up the transcriptome of the Northern Wheatears concerning tissue composition and time guarantees the future survey of the regulatory genes involved in the development of the migratory phenotype. Through the pre-migratory period, birds accomplish outstanding physical and behavioural changes that involve all organ systems. Nevertheless, the molecular mechanisms through which birds synchronize and control hyperphagia, fattening, restlessness increase, immunity boosting and tuning the muscles for such endurance flight are still largely unknown. The use of RNA-Seq has emerged as a powerful tool to analyse complex traits on a broad scale, and we believe it can help to characterize the migratory phenotype of wheatears at an unprecedented level. The primary challenge to conduct quantitative transcriptomic studies in non-model species is the availability of a reference transcriptome, which we have constructed and described in this paper. The cDNA was sequenced by pyrosequencing using the Genome Sequencer Roche GS FLX System; with single paired-end reads of about 400 bp. We estimate the total number of genes at 15,640, of which 67% could be annotated using Turkey and Zebra Finch genomes, or protein sequence information from SwissProt and NCBI databases. With our study, we have made a first step towards understanding the migratory phenotype regarding gene expression of a species that has become a model to study birds long-distance migrations.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany.,Institute of Avian Research, Wilhelmshaven, Germany
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics and Proteomics, German Cancer Research Center, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | - Jonas Kolibius
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| |
Collapse
|
6
|
Gerchen JF, Dufresnes C, Stöck M. Introgression across Hybrid Zones Is Not Mediated by Large X-Effects in Green Toads with Undifferentiated Sex Chromosomes. Am Nat 2018; 192:E178-E188. [DOI: 10.1086/699162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Sharma A, Singh D, Das S, Kumar V. Hypothalamic and liver transcriptome from two crucial life-history stages in a migratory songbird. Exp Physiol 2018; 103:559-569. [PMID: 29380464 DOI: 10.1113/ep086831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the molecular underpinnings of the seasonal adaptation in a latitudinal migratory songbird? What is the main finding and its importance? We found changes in mRNA levels after a photoperiod-induced alteration of seasonal state in a captive long-distance latitudinal avian migrant. The hypothalamus and liver transcriptomes revealed genes involved in the regulatory and functional pathways between non-migratory and migratory states. Our results provide insights into mechanisms underlying homeostasis during seasonal changes that are conserved across most species, including humans. ABSTRACT Very little is understood about genetic mechanisms underlying the onset of spring migration in latitudinal avian migrants. To gain insight into the genetic architecture of the hypothalamus and liver tissues of a long-distance migrant, we examined and compared the transcriptome profile of captive night-migratory black-headed buntings (Emberiza melanocephala) between photoperiod-induced winter non-migratory (WnM) and spring migratory (SM) life-history states under short and long days, respectively. High-throughput 454 pyrosequenced transcripts were mapped initially with reference to the genome of two phylogenetically close species, Taeniopygia guttata and Ficedula albicollis. The F. albicollis genome gave higher annotation results and was used for further analysis. A total of 216 (78 in hypothalamus; 138 in liver) genes were found to be expressed differentially between the WnM and SM life-history states. These genes were enriched for physiological pathways that might be involved in the regulation of seasonal migrations in birds. For example, genes for the ATP binding pathway in the hypothalamus were expressed at a significantly higher level in SM than in the WnM life-history state. Likewise, upregulated genes associated with the myelin sheath and focal adhesion were enriched in the hypothalamus, and those with cell-to-cell junction, intracellular protein transport, calcium ion transport and small GTPase-mediated signal transduction were enriched in the liver. Many of these genes are a part of physiological pathways potentially involved in the regulation of seasonal migration in birds. These results show molecular changes at the regulatory and metabolic levels associated with seasonal transitions in a long-distance migrant and provide the basis for future studies aimed at unravelling the genetic control of migration in birds.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Devraj Singh
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Subhajit Das
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Abstract
Over the last decade, tremendous progress has been made toward a comparative understanding of gene regulatory evolution. However, we know little about how gene regulation evolves in birds, and how divergent genomes interact in their hybrids. Because of the unique features of birds – female heterogamety, a highly conserved karyotype, and the slow evolution of reproductive incompatibilities – an understanding of regulatory evolution in birds is critical to a comprehensive understanding of regulatory evolution and its implications for speciation. Using a novel complement of analyses of replicated RNA-seq libraries, we demonstrate abundant divergence in brain gene expression between zebra finch (Taeniopygia guttata) subspecies. By comparing parental populations and their F1 hybrids, we also show that gene misexpression is relatively rare among brain-expressed transcripts in male birds. If this pattern is consistent across tissues and sexes, it may partially explain the slow buildup of postzygotic reproductive isolation observed in birds relative to other taxa. Although we expected that the action of genetic drift on the island-dwelling zebra finch subspecies would be manifested in a higher rate of trans regulatory divergence, we found that most divergence was in cis regulation, following a pattern commonly observed in other taxa. Thus, our study highlights both unique and shared features of avian regulatory evolution.
Collapse
|
9
|
Ockendon NF, O'Connell LA, Bush SJ, Monzón-Sandoval J, Barnes H, Székely T, Hofmann HA, Dorus S, Urrutia AO. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes. Mol Ecol Resour 2015; 16:446-58. [PMID: 26358618 PMCID: PMC4982090 DOI: 10.1111/1755-0998.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 08/01/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
Next‐generation sequencing methods, such as RNA‐seq, have permitted the exploration of gene expression in a range of organisms which have been studied in ecological contexts but lack a sequenced genome. However, the efficacy and accuracy of RNA‐seq annotation methods using reference genomes from related species have yet to be robustly characterized. Here we conduct a comprehensive power analysis employing RNA‐seq data from Drosophila melanogaster in conjunction with 11 additional genomes from related Drosophila species to compare annotation methods and quantify the impact of evolutionary divergence between transcriptome and the reference genome. Our analyses demonstrate that, regardless of the level of sequence divergence, direct genome mapping (DGM), where transcript short reads are aligned directly to the reference genome, significantly outperforms the widely used de novo and guided assembly‐based methods in both the quantity and accuracy of gene detection. Our analysis also reveals that DGM recovers a more representative profile of Gene Ontology functional categories, which are often used to interpret emergent patterns in genomewide expression analyses. Lastly, analysis of available primate RNA‐seq data demonstrates the applicability of our observations across diverse taxa. Our quantification of annotation accuracy and reduced gene detection associated with sequence divergence thus provides empirically derived guidelines for the design of future gene expression studies in species without sequenced genomes.
Collapse
Affiliation(s)
- Nina F Ockendon
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Lauren A O'Connell
- FAS Centre for Systems Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen J Bush
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Jimena Monzón-Sandoval
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Holly Barnes
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Hans A Hofmann
- Center for Computational Biology and Bioinformatics, Department of Integrative Biology, The University of Texas, Austin, TX, 78712, USA
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
10
|
Gossmann TI, Santure AW, Sheldon BC, Slate J, Zeng K. Highly variable recombinational landscape modulates efficacy of natural selection in birds. Genome Biol Evol 2015; 6:2061-75. [PMID: 25062920 PMCID: PMC4231635 DOI: 10.1093/gbe/evu157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining the rate of protein evolution and identifying the causes of its variation across the genome are powerful ways to understand forces that are important for genome evolution. By using a multitissue transcriptome data set from great tit (Parus major), we analyzed patterns of molecular evolution between two passerine birds, great tit and zebra finch (Taeniopygia guttata), using the chicken genome (Gallus gallus) as an outgroup. We investigated whether a special feature of avian genomes, the highly variable recombinational landscape, modulates the efficacy of natural selection through the effects of Hill-Robertson interference, which predicts that selection should be more effective in removing deleterious mutations and incorporating beneficial mutations in high-recombination regions than in low-recombination regions. In agreement with these predictions, genes located in low-recombination regions tend to have a high proportion of neutrally evolving sites and relaxed selective constraint on sites subject to purifying selection, whereas genes that show strong support for past episodes of positive selection appear disproportionally in high-recombination regions. There is also evidence that genes located in high-recombination regions tend to have higher gene expression specificity than those located in low-recombination regions. Furthermore, more compact genes (i.e., those with fewer/shorter introns or shorter proteins) evolve faster than less compact ones. In sum, our results demonstrate that transcriptome sequencing is a powerful method to answer fundamental questions about genome evolution in nonmodel organisms.
Collapse
Affiliation(s)
- Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Anna W Santure
- Department of Animal and Plant Sciences, University of Sheffield, United KingdomSchool of Biological Sciences, University of Auckland, New Zealand
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, United Kingdom
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
11
|
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology. Neurosci Biobehav Rev 2014; 50:70-6. [PMID: 25280907 DOI: 10.1016/j.neubiorev.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 01/31/2023]
Abstract
High-throughput methods for analyzing genome structure and function are having a large impact in songbird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects.
Collapse
|
12
|
Balakrishnan CN, Mukai M, Gonser RA, Wingfield JC, London SE, Tuttle EM, Clayton DF. Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior. PeerJ 2014; 2:e396. [PMID: 24883256 PMCID: PMC4034602 DOI: 10.7717/peerj.396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 02/04/2023] Open
Abstract
Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel's white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species.
Collapse
Affiliation(s)
| | - Motoko Mukai
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University , Ithaca, NY , USA ; Department of Neurobiology, Physiology and Behavior, University of California , Davis, CA , USA
| | - Rusty A Gonser
- Department of Biology and The Center for Genomic Advocacy (TCGA), Indiana State University , Terre Haute, IN , USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California , Davis, CA , USA
| | - Sarah E London
- Department of Psychology, University of Chicago , Chicago, IL , USA
| | - Elaina M Tuttle
- Department of Biology and The Center for Genomic Advocacy (TCGA), Indiana State University , Terre Haute, IN , USA
| | - David F Clayton
- Division of Biological & Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
13
|
Ekblom R, Wennekes P, Horsburgh GJ, Burke T. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics. Mol Ecol Resour 2014; 14:636-46. [PMID: 24345231 DOI: 10.1111/1755-0998.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|