1
|
Zuhair R, Eastwood M, Jones M, Cross A, Hester J, Issa F, Ginty F, Sailem H. Decoding mTOR signalling heterogeneity in the tumour microenvironment using multiplexed imaging and graph convolutional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573693. [PMID: 38234756 PMCID: PMC10793449 DOI: 10.1101/2023.12.30.573693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Evaluating the contribution of the tumour microenvironment (TME) in tumour progression has proven a complex challenge due to the intricate interactions within the TME. Multiplexed imaging is an emerging technology that allows concurrent assessment of multiple of these components simultaneously. Here we utilise a highly multiplexed dataset of 61 markers across 746 colorectal tumours to investigate how complex mTOR signalling in different tissue compartments influences patient prognosis. We found that the signalling of mTOR pathway can have heterogeneous activation patterns in tumour and immune compartments which correlate with patient prognosis. Using graph neural networks, we determined the most predictive features of mTOR activity in immune cells and identified relevant cellular subpopulations. We validated our observations using spatial transcriptomics data analysis in an independent patient cohort. Our work provides a framework for studying complex cell signalling and reveals important insights for developing mTOR-based therapies.
Collapse
|
2
|
Yang K, Dai X, Fan M, Zhang G. Influences of acid and ethanol stresses on Oenococcus oeni SD-2a and its proteomic and transcriptional responses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2892-2900. [PMID: 33159330 DOI: 10.1002/jsfa.10921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND During winemaking, malolactic fermentation (MLF) is usually induced by Oenococcus oeni owing to its high resistance to wine stress factors. To ensure a controlled and efficient MLF process, starter cultures are inoculated in wine. In previous studies, O. oeni strains with sub-lethal acid or ethanol stresses showed higher freeze-drying vitality and better MLF performance. To explore the mechanisms involved, influences of acid and ethanol stresses on O. oeni SD-2a were investigated in this study to gain a better understanding of the cross-protection responses. RESULTS The results showed that acid and ethanol stresses both caused damage to cell membranes and decreased cellular adenosine triphosphate concentration. At the same time, acid stress increased the uptake of glutathione, while ethanol stress led to cell depolarization. The results of comparative proteomic analysis highlighted that heat shock protein was induced with almost all acid and ethanol stresses. In addition, the expression of stress-relevant genes (hsp20, clpP, trxA, ctsR, recO, usp) increased greatly with ethanol and acid stress treatments. Finally, the viability of O. oeni was improved with acid and ethanol pretreatments after freeze-drying. CONCLUSIONS This study demonstrated that acid and ethanol stresses had mixed influences on O. oeni SD-2a. Some physiological and molecular changes would contribute to a more stress-tolerant state of O. oeni, thereby improving the viability of lyophilized cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
3
|
Álvarez-Lindo N, Baleriola J, de Los Ríos V, Suárez T, de la Rosa EJ. RAG-2 deficiency results in fewer phosphorylated histone H2AX foci, but increased retinal ganglion cell death and altered axonal growth. Sci Rep 2019; 9:18486. [PMID: 31811168 PMCID: PMC6898044 DOI: 10.1038/s41598-019-54873-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs), selectively visualized as γ-H2AX+ foci, occur during the development of the central nervous system, including the retina, although their origin and biological significance are poorly understood. Mutant mice with DSB repair mechanism defects exhibit increased numbers of γ-H2AX+ foci, increased cell death during neural development, and alterations in axonogenesis in the embryonic retina. The aim of this study was to identify putative sources of DSBs. One of the identified DSBs sources is LINE-1 retrotransposition. While we did not detect changes in LINE-1 DNA content during the early period of cell death associated with retinal neurogenesis, retinal development was altered in mice lacking RAG-2, a component of the RAG-1,2-complex responsible for initiating somatic recombination in lymphocytes. Although γ-H2AX+ foci were less abundant in the rag2−/− mouse retina, retinal ganglion cell death was increased and axonal growth and navigation were impaired in the RAG-2 deficient mice, a phenotype shared with mutant mice with defective DNA repair mechanisms. These findings demonstrate that RAG-2 is necessary for proper retinal development, and suggest that both DSB generation and repair are genuine processes intrinsic to neural development.
Collapse
Affiliation(s)
- Noemí Álvarez-Lindo
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Jimena Baleriola
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Laboratory of local translation in neurons and glia, Achucarro Basque Center for Neuroscience; Department of Cell Biology and Histology, University of the Basque Country, Leioa; and Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Vivian de Los Ríos
- Proteomics and Genomics, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Teresa Suárez
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Enrique J de la Rosa
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Peng S, Liu L, Zhao H, Wang H, Li H. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a. Front Microbiol 2018; 9:892. [PMID: 29780378 PMCID: PMC5946679 DOI: 10.3389/fmicb.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
The powerful Quantitative real-time PCR (RT-qPCR) was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni), as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB) species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII) were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v) ethanol). The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.
Collapse
Affiliation(s)
- Shuai Peng
- College of Enology, Northwest A & F University, Yangling, China
| | - Longxiang Liu
- College of Enology, Northwest A & F University, Yangling, China
| | - Hongyu Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| | - Hua Li
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| |
Collapse
|
5
|
Martínez-Bartolomé S, Medina-Aunon JA, López-García MÁ, González-Tejedo C, Prieto G, Navajas R, Salazar-Donate E, Fernández-Costa C, Yates JR, Albar JP. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets. J Proteome Res 2018; 17:1547-1558. [DOI: 10.1021/acs.jproteome.7b00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Salvador Martínez-Bartolomé
- Proteomics Laboratory, National Center for Biotechnology, CSIC, Madrid 28049, Spain
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Rosana Navajas
- Proteomics Laboratory, National Center for Biotechnology, CSIC, Madrid 28049, Spain
| | | | - Carolina Fernández-Costa
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Centro singular de Investigación de Galicia: Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), University of Vigo, Campus Universitario, s/n, Vigo 36310, Spain
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Juan Pablo Albar
- Proteomics Laboratory, National Center for Biotechnology, CSIC, Madrid 28049, Spain
| |
Collapse
|
6
|
Bonomo MG, Di Tomaso K, Calabrone L, Salzano G. Ethanol stress in Oenococcus oeni: transcriptional response and complex physiological mechanisms. J Appl Microbiol 2018; 125:2-15. [PMID: 29377375 DOI: 10.1111/jam.13711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Oenococcus oeni is the dominant species able to cope with a hostile environment of wines, comprising cumulative effects of low pH, high ethanol and SO2 content, nonoptimal growth temperatures and growth inhibitory compounds. Ethanol tolerance is a crucial feature for the activity of O. oeni cells in wine because ethanol acts as a disordering agent of its cell membrane and negatively affects metabolic activity; it damages the membrane integrity, decreases cell viability and, as other stress conditions, delays the start of malolactic fermentation with a consequent alteration of wine quality. The cell wall, cytoplasmic membrane and metabolic pathways are the main sites involved in physiological changes aimed to ensure an adequate adaptive response to ethanol stress and to face the oxidative damage caused by increasing production of reactive oxygen species. Improving our understanding of the cellular impact of ethanol toxicity and how the cell responds to ethanol stress can facilitate the development of strategies to enhance microbial ethanol tolerance; this allows to perform a multidisciplinary endeavour requiring not only an ecological study of the spontaneous process but also the characterization of useful technological and physiological features of the predominant strains in order to select those with the highest potential for industrial applications.
Collapse
Affiliation(s)
- M G Bonomo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - K Di Tomaso
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy.,Ph.D School in Applied and Environmental Safeguard, Università degli Studi della Basilicata, Potenza, Italy
| | - L Calabrone
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - G Salzano
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
7
|
Contreras A, Ribbeck M, Gutiérrez GD, Cañon PM, Mendoza SN, Agosin E. Mapping the Physiological Response of Oenococcus oeni to Ethanol Stress Using an Extended Genome-Scale Metabolic Model. Front Microbiol 2018; 9:291. [PMID: 29545779 PMCID: PMC5838312 DOI: 10.3389/fmicb.2018.00291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
The effect of ethanol on the metabolism of Oenococcus oeni, the bacterium responsible for the malolactic fermentation (MLF) of wine, is still scarcely understood. Here, we characterized the global metabolic response in O. oeni PSU-1 to increasing ethanol contents, ranging from 0 to 12% (v/v). We first optimized a wine-like, defined culture medium, MaxOeno, to allow sufficient bacterial growth to be able to quantitate different metabolites in batch cultures of O. oeni. Then, taking advantage of the recently reconstructed genome-scale metabolic model iSM454 for O. oeni PSU-1 and the resulting experimental data, we determined the redistribution of intracellular metabolic fluxes, under the different ethanol conditions. Four growth phases were clearly identified during the batch cultivation of O. oeni PSU-1 strain, according to the temporal consumption of malic and citric acids, sugar and amino acids uptake, and biosynthesis rates of metabolic products - biomass, erythritol, mannitol and acetic acid, among others. We showed that, under increasing ethanol conditions, O. oeni favors anabolic reactions related with cell maintenance, as the requirements of NAD(P)+ and ATP increased with ethanol content. Specifically, cultures containing 9 and 12% ethanol required 10 and 17 times more NGAM (non-growth associated maintenance ATP) during phase I, respectively, than cultures without ethanol. MLF and citric acid consumption are vital at high ethanol concentrations, as they are the main source for proton extrusion, allowing higher ATP production by F0F1-ATPase, the main route of ATP synthesis under these conditions. Mannitol and erythritol synthesis are the main sources of NAD(P)+, countervailing for 51-57% of its usage, as predicted by the model. Finally, cysteine shows the fastest specific consumption rate among the amino acids, confirming its key role for bacterial survival under ethanol stress. As a whole, this study provides a global insight into how ethanol content exerts a differential physiological response in O. oeni PSU-1 strain. It will help to design better strategies of nutrient addition to achieve a successful MLF of wine.
Collapse
Affiliation(s)
- Angela Contreras
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Ribbeck
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo D Gutiérrez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo M Cañon
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Bergsveinson J, Kajala I, Ziola B. Next-generation sequencing approaches for improvement of lactic acid bacteria-fermented plant-based beverages. AIMS Microbiol 2017; 3:8-24. [PMID: 31294146 PMCID: PMC6604971 DOI: 10.3934/microbiol.2017.1.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Plant-based beverages and milk alternatives produced from cereals and legumes have grown in popularity in recent years due to a range of consumer concerns over dairy products. These plant-based products can often have undesirable physiochemical properties related to flavour, texture, and nutrient availability and/or deficiencies. Lactic acid bacteria (LAB) fermentation offers potential remediation for many of these issues, and allows consumers to retain their perception of the resultant products as natural and additive-free. Using next-generation sequencing (NGS) or omics approaches to characterize LAB isolates to find those that will improve properties of plant-based beverages is the most direct way to product improvement. Although NGS/omics approaches have been extensively used for selection of LAB for use in the dairy industry, a comparable effort has not occurred for selecting LAB for fermenting plant raw substrates, save those used in producing wine and certain types of beer. Here we review the few and recent applications of NGS/omics to profile and improve LAB fermentation of various plant-based substrates for beverage production. We also identify specific issues in the production of various LAB fermented plant-based beverages that such NGS/omics applications have the power to resolve.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Ilkka Kajala
- VTT Technical Research Centre of Finland Ltd., PL1000, 02044VTT, Espoo, Finland
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| |
Collapse
|
9
|
Costantini A, Rantsiou K, Majumder A, Jacobsen S, Pessione E, Svensson B, Garcia-Moruno E, Cocolin L. Complementing DIGE proteomics and DNA subarray analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-simulated conditions. J Proteomics 2015; 123:114-27. [DOI: 10.1016/j.jprot.2015.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/27/2023]
|
10
|
Campbell-Sills H, El Khoury M, Favier M, Romano A, Biasioli F, Spano G, Sherman DJ, Bouchez O, Coton E, Coton M, Okada S, Tanaka N, Dols-Lafargue M, Lucas PM. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines. Genome Biol Evol 2015; 7:1506-18. [PMID: 25977455 PMCID: PMC4494047 DOI: 10.1093/gbe/evv084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne.
Collapse
Affiliation(s)
- Hugo Campbell-Sills
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Marion Favier
- BioLaffort, Research Subsidiary of the Laffort group, Bordeaux, France
| | - Andrea Romano
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - David J Sherman
- INRIA, Univ. Bordeaux, Project team MAGNOME, Talence, France CNRS, Univ. Bordeaux, UMR 5800 LaBRI, Talence, France
| | - Olivier Bouchez
- INRA, UMR444, laboratoire de Génétique Cellulaire, Castanet-Tolosan, France GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Sanae Okada
- NODAI Culture Collection Center, Tokyo University of Agriculture, Japan
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, Japan
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France Bordeaux INP, ISVV, EA 4577 Œnologie, Villenave d'ornon, France
| | - Patrick M Lucas
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France
| |
Collapse
|
11
|
Draft Genome Sequence of Oenococcus oeni Strain X2L (CRL1947), Isolated from Red Wine of Northwest Argentina. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01376-14. [PMID: 25555740 PMCID: PMC4293627 DOI: 10.1128/genomea.01376-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Oenococcus oeni strain X2L, a potential starter culture of malolactic fermentation, isolated from Malbec wine of Argentina. Genes encoding for enzymes involved in the metabolism of malate, citrate, and nitrogen compounds, as well as aroma compounds, were found in this genome, showing its ability to improve the sensorial characteristics of wines.
Collapse
|
12
|
Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01077-14. [PMID: 25342687 PMCID: PMC4208331 DOI: 10.1128/genomea.01077-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oenococcus oeni is the principal lactic acid bacterium responsible for malolactic fermentation in wine. Here, we announce the genome sequences of five O. oeni strains isolated from Nero di Troia wine undergoing spontaneous malolactic fermentation, and we report, for the first time, several genome sequences of strains isolated from the same terroir.
Collapse
|
13
|
Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00658-14. [PMID: 24994801 PMCID: PMC4082001 DOI: 10.1128/genomea.00658-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oenococcus oeni OM27 is a strain selected from “Nero di Troia” wine undergoing spontaneous malolactic fermentation. “Nero di Troia” is a wine made from “Uva di Troia” grapes, an autochthonous black grape variety from the Apulian region (south of Italy). In this paper we present a 1.78-Mb assembly of the O. oeni OM27 genome, the first fully assembled genome of an O. oeni strain from an Italian wine.
Collapse
|